A fast and effective model for wavelet subband histograms and its application in texture image retrieval

Aus de_evolutionary_art_org
Version vom 20. Juni 2016, 21:59 Uhr von Gubachelier (Diskussion | Beiträge) (Used References)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Referenz

M. H. Pi , C. S. Tong , S. K. Choy and H. Zhang: A fast and effective model for wavelet subband histograms and its application in texture image retrieval. IEEE Trans. Image Process., vol. 15, no. 10, pp. 3078-3088, 2006

DOI

http://dx.doi.org/10.1109/TIP.2006.877509

Abstract

This paper presents a novel, effective, and efficient characterization of wavelet subbands by bit-plane extractions. Each bit plane is associated with a probability that represents the frequency of 1-bit occurrence, and the concatenation of all the bit-plane probabilities forms our new image signature. Such a signature can be extracted directly from the code-block code-stream, rather than from the de-quantized wavelet coefficients, making our method particularly adaptable for image retrieval in the compression domain such as JPEG2000 format images. Our signatures have smaller storage requirement and lower computational complexity, and yet, experimental results on texture image retrieval show that our proposed signatures are much more cost effective to current state-of-the-art methods including the generalized Gaussian density signatures and histogram signatures

Extended Abstract

Bibtex

@ARTICLE{1703595,
author={M. H. Pi and C. S. Tong and S. K. Choy and H. Zhang},
journal={IEEE Transactions on Image Processing},
title={A Fast and Effective Model for Wavelet Subband Histograms and Its Application in Texture Image Retrieval},
year={2006},
volume={15},
number={10},
pages={3078-3088},
keywords={block codes;computational complexity;content-based retrieval;feature extraction;image coding;image retrieval;image texture;wavelet transforms;JPEG2000 format images;bit-plane extractions;bit-plane probability concatenation;code-block code-stream;computational complexity;generalized Gaussian density signatures;histogram signatures;image signature;texture image retrieval;wavelet subband histograms;Block codes;Computational complexity;Discrete wavelet transforms;Histograms;Image coding;Image databases;Image retrieval;Image storage;Transform coding;Wavelet coefficients;Bit-plane probabilities;JPEG2000;embedded block coding with optimized truncation (EBCOT);image retrieval;textures;wavelet signatures},
doi={10.1109/TIP.2006.877509},
url={http://dx.doi.org/10.1109/TIP.2006.877509 http://de.evo-art.org/index.php?title=A_fast_and_effective_model_for_wavelet_subband_histograms_and_its_application_in_texture_image_retrieval },
ISSN={1057-7149},
month={Oct},
}

Used References

J. Beck , A. Sutter and R. Ivry, "Spatial frequency channels and perceptual grouping in texture segregation", Comput. Vis., Graph., Image Process., vol. 37, 1987 http://dx.doi.org/10.1016/S0734-189X(87)80006-3

Brodatz Texture Images, [online] Available: online

T. Chang and C. C. J. Kuo, "Texture analysis and classification using tree-structured wavelet transform", IEEE Trans. Image Process., vol. 2, no. 10, pp. 429-441, 1993 http://dx.doi.org/10.1109/83.242353

M. Crouse , R. D. Nowak and R. G. Baraniuk, "Wavelet-based statistical signal processing using hidden Markov models", IEEE Trans. Signal Process., vol. 46, no. 4, pp. 886-902, 1998 http://dx.doi.org/10.1109/78.668544

M. N. Do and M. Vetterli, "Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance", IEEE Trans. Image Process., vol. 11, no. 2, pp. 146-158, 2002 http://dx.doi.org/10.1109/83.982822

G. Fan and X.-G. Xia, "Improved hidden Markov models in wavelet-domain", IEEE Trans. Signal Process., vol. 49, no. 1, pp. 115-120, 2001 http://dx.doi.org/10.1109/78.890351

G. Feng and J. Jiang, "JPEG compressed image retrieval via statistical features", Pattern Recognit., vol. 36, no. 4, pp. 977-985, 2003 http://dx.doi.org/10.1016/S0031-3203(02)00114-0

R. M. Haralick , K. Shanmugam and I. Dinstein, "Textural features for image classification", IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 6, pp. 610-621, 1973 http://dx.doi.org/10.1109/TSMC.1973.4309314

D. J. Heeger and J. R. Bergen, "Pyramid-based texture analysis/synthesis", ACM SIGGRAPH, 1995 http://dx.doi.org/10.1109/ICIP.1995.537718

R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, 1965, Macmillan

"ISO/IEC JTC1/SC29/WC1 N2000", JPEG2000 Part 2 Final Committee Draft, 2000

C. Kervrann and F. Heitz, "A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics", IEEE Trans. Image Process., vol. 4, no. 6, pp. 856-862, 1995 http://dx.doi.org/10.1109/83.388090

A. Laine and J. Fan, "Texture classification by wavelet packet signature", IEEE Trans. Pattern Recognit. Mach. Intell., vol. 15, no. 11, pp. 1186-1193, 1993 http://dx.doi.org/10.1109/34.244679

S. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation", IEEE Trans. Pattern Recognit. Mach. Intell., vol. 11, no. 7, pp. 674-693, 1989 http://dx.doi.org/10.1109/34.192463

M. K. Mandal and C. Liu, "Efficient image indexing techniques in the JPEG2000 domain", J. Electron. Imag., vol. 13, no. 1, pp. 182-187, 2004 http://dx.doi.org/10.1117/1.1633286

P. Moulin and J. Liu, "Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors", IEEE Trans. Inf. Theory, vol. 45, no. 4, pp. 909-919, 1999

Y. Rui , T. S. Huang and S.-F. Chang, "Image retrieval: Current techniques, promising directions, and open issues", J. Vis. Commun. Image Represent., vol. 10, pp. 39-62, 1999 http://dx.doi.org/10.1006/jvci.1999.0413

G. Schaefer, "Compressed domain image retrieval by comparing vector quantization codebooks", Proc. SPIE, vol. 4671, pp. 959-966, 2002 http://dx.doi.org/10.1117/12.453018

K. Sharifi and A. Leon-Garcia, "Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video", IEEE Trans. Circuits Syst. Video Technol., vol. 5, no. 1, pp. 52-56, 1995 http://dx.doi.org/10.1109/76.350779

M. Shneier and M. Abdel-Mottaleb, "Exploiting the JPEG compression scheme for image retrieval", IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8, pp. 849-853, 1996 http://dx.doi.org/10.1109/34.531805

J. R. Smith and S.-F. Chang, "Transform features for texture classification and discrimination in large image databases", Proc. Int. Conf. Image Process., 1994 http://dx.doi.org/10.1109/ICIP.1994.413817

D. Taubman, "High performance scalable image compression with EBCOT", IEEE Trans. Signal Process., vol. 49, no. 1, pp. 115-120, 2001 http://dx.doi.org/10.1109/78.890351

M. Unser, "Texture classification and segmentation using wavelet frames", IEEE Trans. Image Process., vol. 4, no. 11, pp. 1549-1560, 1995 http://dx.doi.org/10.1109/83.469936

G. V. Wouwer , P. Scheunders and D. V. Dyck, "Statistical texture characterization from discrete wavelet representations", IEEE Trans. Image Process., vol. 8, no. 4, pp. 592-598, 1999 http://dx.doi.org/10.1109/83.753747

Z. Xiong and T. S. Huang, "Wavelet-based texture features can be extracted efficiently from compressed-domain for JPEG2000 coded images", Proc. Int. Conf. Image Processing, vol. 1, pp. 481-484, 2002 http://dx.doi.org/10.1109/ICIP.2002.1038065

Links

Full Text

internal file


Sonstige Links