A genetic algorithm for target tracking in FLIR video sequences using intensity variation function

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


G. Paravati , A. Sanna , B. Pralio and F. Lamberti: A genetic algorithm for target tracking in FLIR video sequences using intensity variation function. IEEE Trans. Instrum. Meas., vol. 58, no. 10, pp. 3457-3467, 2009




Automatic target tracking in forward-looking infrared (FLIR) imagery is a challenging research area in computer vision. This task could be even more critical when real-time requirements have to be taken into account. In this context, techniques exploiting the target intensity profile generated by an intensity variation function (IVF) proved to be capable of providing significant results. However, one of their main limitations is represented by the associated computational cost. In this paper, an alternative approach based on genetic algorithms (GAs) is proposed. GAs are search methods based on evolutionary computations, which exploit operators inspired by genetic variation and natural selection rules. They have been proven to be theoretically and empirically robust in complex space searches by their founder, J. H. Holland. Contrary to most optimization techniques, whose goal is to improve performances toward the optimum, GAs aim at finding near-optimal solutions by performing parallel searches in the solution space. In this paper, an optimized target search strategy relying on GAs and exploiting an evolutionary approach for the computation of the IVF is presented. The proposed methodology was validated on several data sets, and it was compared against the original IVF implementation by Bal and Alam. Experimental results showed that the proposed approach is capable of significantly improving performances by dramatically reducing algorithm processing time.

Extended Abstract


author={G. Paravati and A. Sanna and B. Pralio and F. Lamberti},
journal={IEEE Transactions on Instrumentation and Measurement},
title={A Genetic Algorithm for Target Tracking in FLIR Video Sequences Using Intensity Variation Function},
keywords={genetic algorithms;image sequences;infrared imaging;target tracking;evolutionary computations;forward-looking infrared imagery;genetic algorithm;image sequence analysis;intensity variation function;target tracking;video sequences;Forward-looking infrared (FLIR) imagery;genetic algorithms (GAs);image sequence analysis;infrared (IR) target tracking;intensity variation function (IVF)},
url={  },

Used References

J. Angus , H. Zhou , C. Bea , L. Becket-Lemus , J. Klose and S. Tubbs, Genetic algorithms in passive tracking, 1993

A. Bal and M. S. Alam, "Automatic target tracking in FLIR image sequences using intensity variation function and template modeling", IEEE Trans. Instrum. Meas., vol. 54, no. 5, pp. 1846-1852, 2005 http://dx.doi.org/10.1109/TIM.2005.855090

S. M. Bhandarkar and H. Zhang, "Image segmentation using evolutionary computation", IEEE Trans. Evol. Comput., vol. 3, no. 1, pp. 1-21, 1999 http://dx.doi.org/10.1109/4235.752917

H. Bhaskar , R. L. Kingsland and S. Singh, "Multi-resolution based motion estimation for object tracking using genetic algorithm ", IET Int. Conf. Visual Inf. Eng., pp. 583-588, 2006 http://dx.doi.org/10.1049/cp:20060596

U. Braga-Neto , M. Choudhary and J. Goutsias, "Automatic target detection and tracking in forward-looking infrared image sequences using morphological connected operators", J. Electron. Imaging, vol. 13, no. 4, pp. 802-813, 2004 http://dx.doi.org/10.1117/1.1789982

J. Carrier , J. Litva , H. Leung and T. To, "Genetic algorithm for multiple target tracking data association", Proc. SPIE Acquisition, Tracking, Pointing, vol. 2739, pp. 180-190, 1996 http://dx.doi.org/10.1117/12.241914

G. Chen and L. Hong, "A genetic based multi dimensional data association algorithm for multi sensor multi target tracking", Math. Comput. Model., vol. 26, no. 4, pp. 57-69, 1997 http://dx.doi.org/10.1016/S0895-7177(97)00144-1

D. Davies , P. L. Palmer and M. Mirmehdi, "Detection and tracking of very small low-contrast objects", Proc. 9th Brit. Mach. Vis. Conf., pp. 599-608, 1998 http://dx.doi.org/10.5244/C.12.60

L. Davis, Handbook of Genetic Algorithms, 1991, Van Nostrand Reinhold

A. Dawoud , M. S. Alam , A. Bal and C. Loo, "Target tracking in infrared imagery using weighted composite reference function-based decision fusion", IEEE Trans. Image Process., vol. 15, no. 2, pp. 404-410, 2006 http://dx.doi.org/10.1109/TIP.2005.860626

K. A. De Jong, An analysis of the behavior of a class of genetic adaptive systems, 1975

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1989, Addison-Wesley

M. Gong and Y.-H. Yang, "Multi-resolution genetic algorithm and its application to motion estimation", Proc. 16th ICPR, vol. 1, pp. 10644, 2002 http://dx.doi.org/10.1109/ICPR.2002.1044829

E. Y. Kim and S. H. Park, "Automatic video segmentation using genetic algorithms", Pattern Recognit. Lett., vol. 27, no. 11, pp. 1252-1265, 2006 http://dx.doi.org/10.1016/j.patrec.2005.07.023

E. Y. Kim , S. H. Park and H. J. Kim, "A genetic algorithm based segmentation of Markov random field images", IEEE Signal Process. Lett., vol. 7, no. 11, pp. 301-303, 2000 http://dx.doi.org/10.1109/97.873564

D. B. Hillis, "Using a genetic algorithm for multi-hypothesis tracking", Proc. 9th Int. Conf. Tools Artif. Intell., pp. 112-117, 1997 http://dx.doi.org/10.1109/TAI.1997.632244

J. H. Holland, Adaptation in Natural and Artificial Systems, 1975, Univ. of Michigan Press

L. Hong , Y. Ruan , W. Li , D. Wicker and J. Layne, "Energy-based video tracking using joint target density processing with an application to unmanned aerial vehicle surveillance", IET Comput. Vis., vol. 2, no. 1, pp. 1-12, 2008 http://dx.doi.org/10.1049/iet-cvi:20070017

S. W. Hwang , E. Y. Kim , S. H. Park and H. J. Kim, "Object extraction and tracking using genetic algorithms", Proc. Int. Conf. Image Process., vol. 2, pp. 383-386, 2001 http://dx.doi.org/10.1109/ICIP.2001.958508

IEEE OTCBVS WS Series Bench, [online] Available: online

S. Li , W.-P. X. Wang and N.-N. Zheng, "A novel fast motion estimation method based on genetic algorithm", Proc. ICIP, vol. 1, pp. 66-69, 1999 http://dx.doi.org/10.1109/ICIP.1999.821566

M. Mitchell, An Introduction to Genetic Algorithms, 1999, MIT Press

S. K. Pal and P. P. Wang, Genetic Algorithms for Pattern Recognition, 1996, CRC Press

H. Shekarforoush and R. Chellappa, "A multi-fractal formalism for stabilization, object detection and tracking in FLIR sequences ", Proc. Int. Conf. Image Process., vol. III, pp. 78-81, 2000 http://dx.doi.org/10.1109/ICIP.2000.899299

M. Tagliasacchi, "Optical flow estimation using genetic algorithms", Int. Workshop Fuzzy Logic, pp. 1-4, 2003 http://dx.doi.org/10.1007/10983652_37

I. Turkmen , K. Guney and D. Karaboga, "Genetic tracker with neural network for single and multiple target tracking", Neurocomputing, vol. 69, no. 1618, pp. 2309-2319, 2006 http://dx.doi.org/10.1016/j.neucom.2005.04.014

A. Yilmaz , O. Javed and M. Shah, "Object tracking: A survey", ACM Comput. Surv., vol. 38, no. 4, pp. 1-45, 2006 http://dx.doi.org/10.1145/1177352.1177355

A. Yilmaz , K. Shafique , N. Lobo , X. Li , T. Olson and M. A. Shah, "Target-tracking in FLIR imagery using mean-shift and global motion compensation", Proc. IEEE Workshop Comput. Vis. Beyond Visible Spectrum, pp. 54-58, 2001

A. Yilmaz , K. Shafique and M. Shah, "Tracking in airborne forward looking infrared imagery", Image Vis. Comput., vol. 21, no. 7, pp. 623-635, 2003 http://dx.doi.org/10.1016/S0262-8856(03)00059-3

M. Zaim , A. Elouaazizi and R. Benslimane, "Genetic algorithms based motion estimation", Vis. Interface Annu. Conf., pp. 141-147, 2001


Full Text


internal file

Sonstige Links