Computerized measures of visual complexity

Aus de_evolutionary_art_org
Version vom 15. Juni 2016, 21:13 Uhr von Gubachelier (Diskussion | Beiträge) (Used References)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Referenz

P. Machado, J. Romero, M. Nadal, A. Santos, J. Correia, and A. Carballal: Computerized measures of visual complexity. Acta Psychologica, vol. 160, iss. 1, pp. 43-57, 2015.

DOI

http://dx.doi.org/10.1016/j.actpsy.2015.06.005

Abstract

Visual complexity influences people's perception of, preference for, and behaviour toward many classes of objects, from artworks to web pages. The ability to predict people's impression of the complexity of different kinds of visual stimuli holds, therefore, great potential for many domains, basic and applied. Here we use edge detection operations and several image metrics based on image compression error and Zipf's law to estimate the visual complexity of images. The experiments involved 800 images, each previously rated by thirty participants on perceived complexity. In a first set of experiments we analysed the correlation of individual features with the average human response, obtaining correlations up to rs = .771. In a second set of experiments we employed Machine Learning techniques to predict the average visual complexity score attributed by humans to each stimuli. The best configurations obtained a correlation of rs = .832. The average prediction error of the Machine Learning system over the set of all stimuli was .096 in a normalized 0 to 1 interval, showing that it is possible to predict, with high accuracy human responses. Overall, edge density and compression error were the strongest predictors of human complexity ratings.

Extended Abstract

Bibtex

@article{Machado201543,
title = "Computerized measures of visual complexity ",
journal = "Acta Psychologica ",
volume = "160",
number = "",
pages = "43 - 57",
year = "2015",
note = "",
issn = "0001-6918",
doi = "http://dx.doi.org/10.1016/j.actpsy.2015.06.005",
url = "http://www.sciencedirect.com/science/article/pii/S0001691815300160 http://de.evo-art.org/index.php?title=Computerized_measures_of_visual_complexity ",
author = "Penousal Machado and Juan Romero and Marcos Nadal and Antonino Santos and João Correia and Adrián Carballal",
keywords = "Visual complexity",
keywords = "Psychological aesthetics",
keywords = "Vision",
keywords = "Machine learning "
}

Used References

Alario, F. -X., & Ferrand, L. (1999). A set of 400 pictures standardized from French: Norms for name agreement, image agreement, familiarity, visual complexity, image variability, and age of acquisition. Behavior Research Methods, Instruments, & Computers, 31, 531–552. https://www.researchgate.net/publication/12797319_A_set_of_400_pictures_standardized_for_French_Norms_for_name_agreement_image_agreement_familiarity_visual_complexity_image_variability_and_age_of_acquisition_Behavior_Research_Methods_Instruments_Comp

Arnheim, R. (1966). Towards a psychology of art/entropy and art—An essay on disorder and order. The Regents of the University of California.

Attneave, F. (1957). Physical determinants of the judged complexity of shapes. Journal of Experimental Psychology, 53, 221–227.

Bauerly, M., & Liu, Y. (2008). Effects of symmetry and number of compositional elements on interface and design aesthetics. International Journal of Human Computer Interaction, 24, 275–287. https://www.researchgate.net/publication/288495065_Effects_of_Symmetry_and_Number_of_Compositional_Elements_on_Interface_and_Design_Aesthetics

Berlyne, D.E. (1963). Complexity and incongruity variables as determinants of exploratory choice and evaluative ratings. Canadian Journal of Psychology, 17, 274–290. https://www.researchgate.net/publication/9518071_Complexity_and_incongruity_variables_as_determinants_of_exploratory_choice_and_evaluative_ratings

Berlyne, D.E. (1970). Novelty, complexity, and hedonic value. Perception & Psychophysics, 8, 279–286. https://www.researchgate.net/publication/225680366_Novelty_Complexity_and_Hedonic_Value

Berlyne, D.E. (1971). Aesthetics and psychobiology. New York: Appleton-Century-Crofts. https://www.researchgate.net/publication/269451060_Aesthetics_and_Psychobiology

Berlyne, D.E. (1974). Novelty, complexity, and interestingness. In D.E. Berlyne (Ed.), Studies in the new experimental aesthetics: Steps toward an objective psychology of aesthetic appreciation (pp. 175–180). Washington, D. C.: Hemisphere Publishing Corporation.

Berlyne, D.E., Ogilvie, J.C., & Parham, L.C.C. (1968). The dimensionality of visual complexity, interestingness, and pleasingness. Canadian Journal of Psychology, 22, 376–387. https://www.researchgate.net/publication/17460547_The_dimensionality_of_visual_complexity_interestingness_and_pleasingness

Bertamini, M., Palumbo, L., Gheorghes, T.N., & Galatsidas, M. (2015). Do observers like curvature or do they dislike angularity? British Journal of Psychology. http://dx.doi.org/10.1111/bjop.12132 (in press). https://www.researchgate.net/publication/274903267_Do_observers_like_curvature_or_do_they_dislike_angularity

Birkhoff, G.D. (1932). Aesthetic measure. Cambridge, Mass.: Harvard University Press.

Bonin, P., Peereman, R., Malardier, N., Méot, A., & Chalard, M. (2003). A newset of 299 pictures for psycholinguistic studies: French norms for name agreement, image agreement, conceptual familiarity, visual complexity, image variability, age of acquisition, and naming latencies. Behavior Research Methods, Instruments, & Computers, 35, 158–167. https://www.researchgate.net/publication/10779789_A_new_set_of_299_pictures_for_psycholinguistic_studies_French_norms_for_name_agreement_image_agreement_conceptual_familiarity_visual_complexity_image_variability_age_of_acquisition_and_naming_latencie

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6). https://www.researchgate.net/publication/224377985_A_Computational_Approach_To_Edge_Detection

Cela-Conde, C.J., Ayala, F.J., Munar, E., Maestú, F., Nadal, M., & Capó, M.A. (2009). Sexrelated similarities and differences in the neural correlates of beauty. Proceedings of the National Academy of Sciences of the United States of America, 106, 3847–3852. https://www.researchgate.net/publication/24035236_Sex-related_similarities_and_differences_in_the_neural_correlates_of_beauty

Cela-Conde, C.J., Marty, G., Maestú, F., Ortiz, T., Munar, E., & Fernández, A. (2004). Activation of the prefrontal cortex in the human visual aesthetic perception. Proceedings of the National Academy of Sciences of the United States of America, 101, 6321–6325. https://www.researchgate.net/publication/8624041_Activation_of_the_prefrontal_cortex_in_humans_visual_aesthetic_perception

Chatterjee, A. (2004). Prospects for a cognitive neuroscience of visual aesthetics. Bulletin of psychology and the arts, 4, 55–60.

Cottington, D. (1998). Cubism. London: Tate Gallery Publishing.

Cupchik, G.C. (1986). A decade after Berlyne. New directions in experimental aesthetics. Poetics, 15, 345–369. https://www.researchgate.net/publication/248440698_A_decade_after_Berlyne_New_directions_in_experimental_aesthetics

Donderi, D.C. (2003). A complexity measure for electronic displays: Final report on the experiments. Toronto: Department of National Defence, Defence Research and Development Canada.

Donderi, D.C. (2006). Visual complexity: A review. Psychological Bulletin, 132, 73–97. https://www.researchgate.net/publication/7337589_Visual_Complexity_A_Review

Donderi, D.C., & McFadden, S. (2005). Compressed file length predicts search time and errors on visual displays. Displays, 26, 71–78. https://www.researchgate.net/publication/250717351_Compressed_file_length_predicts_search_time_and_errors_on_visual_displays

Eysenck, H.J. (1941). The empirical determination of an aesthetic formula. Psychological Review, 48, 83–92. https://www.researchgate.net/publication/232558348_The_empirical_determination_of_an_aesthetic_formula

Eysenck, H.J. (1942). The experimental study of the ‘Good Gestalt’ — A new approach. Psychological Review, 49, 344–363. https://www.researchgate.net/publication/232463369_The_experimental_study_of_the_'Good_Gestalt'_A_new_approach

Eysenck, H.J., & Castle, M. (Aug 1971). Comparative study of artists and nonartists on the Maitland Graves design judgment test. Journal of Applied Psychology, 55(4), 389–392. http://dx.doi.org/10.1037/h0031469. https://www.researchgate.net/publication/232513234_Comparative_study_of_artists_and_nonartists_on_the_maitland_graves_design_judgment_test

Fechner, G.T. (1876). Vorschule der Ästhetik. Leipzig: Breitkopf und Härtel.

Fisher, Y. (Ed.). (1995). Fractal image compression: Theory and application. London: Springer Verlag. https://www.researchgate.net/publication/266253420_Fractal_Image_Compression_Theory_and_Application

Forsythe, A., Mulhern, G., & Sawey, M. (2008). Confounds in pictorial sets: The role of complexity and familiarity in basic-level picture processing. Behavior Research Methods, 40, 116–129. https://www.researchgate.net/publication/5440198_Confounds_in_pictorial_sets_The_role_of_complexity_and_familiarity_in_basic-level_picture_processing

Forsythe, A., Nadal, M., Sheehy, N., Cela-Conde, C.J., & Sawey, M. (2011). Predicting beauty: Fractal dimension and visual complexity in art. British Journal of Psychology, 102, 49–70. https://www.researchgate.net/publication/49761486_Predicting_beauty_Fractal_dimension_and_visual_complexity_in_art

Forsythe, A., Sheehy, N., & Sawey, M. (2003). Measuring icon complexity: An automated analysis. Behavior Research Methods, Instruments, & Computers, 35, 334–342. https://www.researchgate.net/publication/10684509_Measuring_icon_complexity_An_automated_analysis

García, M., Badre, A.N., & Stasko, J.T. (1994). Development and validation of icons varying in their abstractness. Interacting with computers, 6, 191–211. https://www.researchgate.net/publication/220054758_Development_and_Validation_of_Icons_Varying_in_their_Abstractness

Gooding, M. (2001). Abstract art. London: Tate Gallery Publishing.

Graves, M. (1948). Design judgement test. New York: The Psychological Corporation.

Haykin, S. (1994). Neural networks: A comprehensive foundation. Prentice Hall PTR. https://www.researchgate.net/publication/265439255_Neural_Networks_A_Comprehensive_Foundation

Heath, T., Smith, S.G., & Lim, B. (2000). Tall buildings and the urban skyline. The effect of visual complexity on preferences. Environment and Behavior, 32, 541–556.

Imamoglu, C. (2000). Complexity, liking and familiarity: Architecture and nonarchitecture Turkish students' assessments of traditional and modern house facades. Journal of Environmental Psychology, 20, 5–16. https://www.researchgate.net/publication/223545134_Complexity_liking_and_familiarity_Architecture_and_non-architecture_Turkish_students'_assessments_of_traditional_and_modern_house_facades

Jones-Smith, K., & Mathur, H. (2006). Fractal analysis: Revisiting Pollock's drip paintings. Nature, 444, E9–E10. https://www.researchgate.net/publication/6662814_Fractal_Analysis_Revisiting_Pollock's_Drip_Paintings

Krishen, A., Kamra, K., & Mac, F. (2008). Perceived versus actual complexity for websites: Their relationship to consumer satisfaction. Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior, 21, 104–123. https://www.researchgate.net/publication/264038711_Perceived_Versus_Actual_Complexity_for_Websites_Their_Relationship_to_Consumer_Satisfaction

Lang, P.J., Bradley, M.M., & Cuthbert, B.N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report (pp. A −7). Gainesville, FL: University of Florida. https://www.researchgate.net/publication/256309451_International_Affective_Picture_System_IAPS_Affective_Ratings_of_Pictures_and_Instruction_Manual_Rep_No_A-8

Lavie, T., Oron-Gilad, T., & Meyer, J. (2011). Aesthetics and usability of in-vehicle navigation displays. International Journal of Human-Computer Studies, 69, 80–89. https://www.researchgate.net/publication/220106982_Aesthetics_and_usability_of_in-vehicle_navigation_displays

Lavie, T., & Tractinsky, N. (2004). Assessing dimensions of perceived visual aesthetics of web sites. International Journal of Human-Computer Studies, 60, 269–298. https://www.researchgate.net/publication/222537214_Assessing_dimensions_of_perceived_visual_aesthetics_of_Web_sites

Leder, H., Belke, B., Oeberst, A., & Augustin, D. (2004). A model of aesthetic appreciation and aesthetic judgments. British Journal of Psychology, 95, 489–508. https://www.researchgate.net/publication/8192219_A_Model_of_Aesthetic_Appreciation_and_Aesthetic_Judgments

Leeuwenberg, E.L.J. (1968). Structural information of visual patterns: An efficient coding system in perception. The Hague: Mouton. https://www.researchgate.net/publication/247658356_Structural_information_of_visual_patterns_An_efficient_coding_system_in_perception

Leeuwenberg, E.L.J. (1969). Quantitative specification of information in sequential patterns. Psychological Review, 76, 216–220. https://www.researchgate.net/publication/17406583_Quantitative_specification_of_information_in_sequential_patterns

Machado, P. (2007). Inteligncia Artificial e Arte. (Ph.D. thesis) Coimbra, Portugal: University of Coimbra (in Portuguese). https://www.researchgate.net/publication/232590230_Inteligencia_Artificial_e_Arte

Machado, P., & Cardoso, A. (1998). Computing aesthetics. In F. Oliveira (Ed.), XIVth Brazilian Symposium on Artificial Intelligence SBIA'98. LNAI Series. (pp. 219–229). Porto Alegre, Brazil: Springer. https://www.researchgate.net/publication/2807339_Computing_Aesthetics

Machado, P., & Cardoso, A. (2002). All the truth about NEvAr. Applied Intelligence, Special Issue on Creative Systems, 16(2), 101–119. https://www.researchgate.net/publication/220204830_All_the_truth_about_NEvAr

Machado, P., Romero, J., Cardoso, A., & Santos, A. (2005). Partially interactive evolutionary artists. New Generation Computing, 23(42), 143–155. https://www.researchgate.net/publication/220619046_Partially_Interactive_Evolutionary_Artists

Machado, P., Romero, J., & Manaris, B. (2007). Experiments in computational aesthetics: An iterative approach to stylistic change in evolutionary art. In J. Romero, & P. Machado (Eds.), Springer Berlin Heidelberg. https://www.researchgate.net/publication/230855582_Experiments_in_Computational_Aesthetics_An_Iterative_Approach_to_Stylistic_Change_in_Evolutionary_Art

Machado, P., Romero, J., Santos, A., Cardoso, A., & Pazos, A. (2007). On the development of evolutionary artificial artists. Computers & Graphics, 31(6), 818–826.

Malpas, J. (1997). Realism. London: Tate Gallery Publishing.

Manaris, B., Purewal, T., & McCormick, C. (2002). Progress towards recognizing and classifying beautiful music with computers—Midi-encoded music and the zipfmandelbrot law. Proceedings of the IEEE southeastcon 2002 conference, Columbia. https://www.researchgate.net/publication/3943724_Progress_towards_recognizing_and_classifying_beautiful_music_with_computers_-_MIDI-encoded_music_and_the_Zipf-Mandelbrot_law

Manaris, B., Vaughan, D., Wagner, C., Romero, J., & Davis, R.B. (2003). Evolutionary music and the Zipf–Mandelbrot Law: Progress towards developing fitness functions for pleasant music. EvoMUSART2003—1st European Workshop on Evolutionary Music and Art, Essex, UK. Lecture Notes in Computer Science, Applications of Evolutionary Computing, LNCS, 2611. (pp. 522–534). Springer. https://www.researchgate.net/publication/262401296_Evolutionary_music_and_the_zipf-mandelbrot_law_developing_fitness_functions_for_pleasant_music

Marin, M., & Leder, H. (2013). Examining complexity across domains: relating subjective and objective measures of affective environmental scenes, paintings and music. PLoS One, 8(8), e72412. http://dx.doi.org/10.1371/journal.pone.0072412. https://www.researchgate.net/publication/256102680_Examining_Complexity_across_Domains_Relating_Subjective_and_Objective_Measures_of_Affective_Environmental_Scenes_Paintings_and_Music

McDougall, S.J.P., Curry, M.B., & de Bruijn, O. (1999). Measuring symbol and icon characteristics: Norms for concreteness, complexity, meaningfulness, familiarity, and semantic distance for 239 symbols. Behavior Research Methods, Instruments, & Computers, 31, 487–519. https://www.researchgate.net/publication/12797317_Measuring_symbol_and_icon_characteristics_Norms_for_concreteness_complexity_meaningfulness_familiarity_and_semantic_distance_for_239_symbols

McDougall, S.J.P., de Bruijn, O., & Curry, M.B. (2000). Exploring the effects of icon characteristics on user performance: The role of icon concreteness, complexity, and distinctiveness. Journal of Experimental Psychology: Applied, 6, 291–306. https://www.researchgate.net/publication/12113707_Exploring_the_effects_of_icon_characteristics_on_user_performance_The_role_of_icon_concreteness_complexity_and_distinctiveness

Moshagen, M., & Thielsch, M.T. (2010). Facets of visual aesthetics. International Journal of Human-Computer Studies, 68, 689–709. https://www.researchgate.net/publication/220106874_Facets_of_visual_aesthetics

Nadal, M., Munar, E., Marty, G., & Cela-Conde, C.J. (2010). Visual complexity and beauty appreciation: Explaining the divergence of results. Empirical Studies of the Arts, 28, 173–191. https://www.researchgate.net/publication/216326467_Visual_Complexity_and_Beauty_Appreciation_Explaining_the_Divergence_of_Results

Palmer, S.E. (1999). Vision Science: Photons to Phenomenology. MIT Press. 978-0-262- 16183-1. https://www.researchgate.net/publication/224282145_Vision_Science_From_Photons_to_Phenomenology

Palmer, S.E., Schloss, K.B., & Sammartino, J. (2013). Visual aesthetics and human preference. Annual Review of Psychology, 64, 77–107. https://www.researchgate.net/publication/231610458_Visual_Aesthetics_and_Human_Preference

Palumbo, L., Ogden, R., Makin, A.D.J., & Bertamini,M. (2014). Examining visual complexity and its influence on perceived duration. Journal of Vision, 14, 1–18. http://dx.doi.org/10.1167/14.14.3 https://www.researchgate.net/publication/269466729_Examining_visual_complexity_and_its_influence_on_perceived_duration

Parr, M. (1999). Boring postcards. London: Phaidon Press.

Parr, M. (2000). Boring postcards USA. London: Phaidon Press.

Pecchinenda, A., Bertamini, M., Makin, A.D.J., & Ruta, N. (2014). The pleasantness of visual symmetry: Always, never or sometimes. PLoS One, 9, e92685. http://dx.doi.org/10.1371/journal.pone.0092685 https://www.researchgate.net/publication/261033830_The_Pleasantness_of_Visual_Symmetry_Always_Never_or_Sometimes

Pieters, R., Wedel, M., & Batra, R. (2010). The stopping power of advertising: Measures and effects of visual complexity. Journal of Marketing, 74, 48–60. https://www.researchgate.net/publication/247837253_The_Stopping_Power_of_Advertising_Measures_and_Effects_of_Visual_Complexity

Powers, D. (1998). Applications and explanations of Zipf's law. NeMLaP3/CoNLL '98: Proceedings of the joint conferences on new methods in language processing and computational natural language learning (pp. 151–160). Morristown, NJ, USA: Association for Computational Linguistics.

Reimann, M., Zaichkowsky, J., Neuhaus, C., Bender, T., &Weber, B. (2010). Aesthetic package design: A behavioral, neural, and psychological investigation. Journal of Consumer Psychology, 20, 431–441. https://www.researchgate.net/publication/228300446_Aesthetic_Package_Design_A_Behavioral_Neural_and_Psychological_Investigation

Rosenblatt, F. (Nov 1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://www.researchgate.net/publication/221996769_The_Perceptron_A_Probabilistic_Model_for_Information_Storage_and_Organization_in_the_Brain

Rumelhart, D.E., Hinton, G.E., &Williams, R.J. (1986). Learning internal representations by error propagation. In D.E. Rumelhart, J.L. McClelland, & PDP Research Group (Eds.), Paralled Distributed Processing. Explorations in the Microstructure of Cognition. Foundations, 1. (pp. 318–362). Cambridge, MA: The MIT Press. https://www.researchgate.net/publication/243743707_Learning_Internal_Representations_by_Error_Propagation

Salomon, D. (1997). Data Compression: The Complete Reference. New York, NY, USA: Springer-Verlag New York, Inc. https://www.researchgate.net/publication/220688928_Data_Compression_The_Complete_Reference

Simon, H.A. (1972). Complexity and the representation of patterned sequences of symbols. Psychological Review, 79, 369–382. https://www.researchgate.net/publication/232543793_Complexity_and_the_representation_of_patterned_sequences_of_symbols

Snodgrass, J.G. (1997). Picture naming by young children: Norms for name agreement, familiarity, and visual complexity. Journal of Experimental Child Psychology, 65, 171–237. https://www.researchgate.net/publication/14049929_Picture_Naming_by_Young_Children_Norms_for_Name_Agreement_Familiarity_and_Visual_Complexity

Sobel, I. (1990). An isotropic 3 × 3 image gradient operator. Machine vision for threedimensional scenes, 376–379.

Spehar, B., Clifford, C.W.G., Newell, B.R., & Taylor, R.P. (2003). Universal aesthetic of fractals. Computers & Graphics, 27, 813–820. https://www.researchgate.net/publication/222524936_Universal_aesthetic_of_fractals

Strother, L., & Kubovy, M. (2003). Perceived complexity and the grouping effect in band patterns. Acta Psychologica, 114, 229–244. https://www.researchgate.net/publication/8963179_Perceived_complexity_and_the_grouping_effect_in_band_patterns

Tatarkiewicz, W. (1972). The great theory of beauty and its decline. The Journal of Aesthetics and Art Criticism, 31, 165–180. https://www.researchgate.net/publication/270337060_The_Great_Theory_of_Beauty_and_Its_Decline

Taylor, R.P., Micholich, A.P., & Jonas, D. (1999). Fractal analysis of Pollock's drip paintings. Nature, 399, 422. https://www.researchgate.net/publication/232799211_Fractal_analysis_of_Pollock's_drip_paintings

Taylor, R.P., Micholich, A.P., & Jonas, D. (2002). The construction of Jackson Pollock's fractal drip paintings. Leonardo, 35, 203–207. https://www.researchgate.net/publication/249562092_The_Construction_of_Jackson_Pollock's_Fractal_Drip_Paintings

Thomson, B. (1998). Post-impressionism. London: Tate Gallery Publishing.

Tinio, P.P.L., & Leder, H. (2009). Just how stable are stable aesthetic features? Symmetry, complexity, and the jaws of massive familiarization. Acta Psychologica, 130, 241–250. https://www.researchgate.net/publication/24010838_Just_how_stable_are_stable_aesthetic_features_Symmetry_complexity_and_the_jaws_of_massive_familiarization

van der Helm, P.A. (2004). Transparallel processing by hyperstrings. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 10862–10867. https://www.researchgate.net/publication/8446648_Transparallel_processing_by_hyperstrings

van der Helm (2014). Simplicity in vision: A multidisciplinary account of perceptual organization. Cambridge University Press. https://www.researchgate.net/publication/289374675_Simplicity_in_vision_A_multidisciplinary_account_of_perceptual_organization

Winston, A.S., & Cupchik, G.C. (1992). The evaluation of high art and popular art by naive and experienced viewers. Visual Arts Research, 18, 1–14. https://www.researchgate.net/publication/285742138_The_evaluation_of_high_art_and_popular_art_by_naive_and_experienced_viewers

Zipf, G.K. (1949). Human Behavior and the Principle of Least Effort. Addison-Wesley. https://www.researchgate.net/publication/238696293_Human_Behavior_and_The_Principle_of_Least_Effort

Links

Full Text

https://www.researchgate.net/publication/279954643_Computerized_measures_of_visual_complexity

internal file


Sonstige Links