Creativity refined: bypassing the gatekeepers of appropriateness and value

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Alan Dorin, Kevin B. Korb: Creativity refined: bypassing the gatekeepers of appropriateness and value. In: McCormack & d’Inverno: Computers and Creativity, Springer, Berlin, 2012, 339-360



This chapter introduces a new definition of creativity that is independent of notions of value or appropriateness. These notions, we argue, have encumbered previous definitions and confused the production of software-based creativity. Our definition defines the creativity of a generative procedure by reference to its ability to create artefacts that are improbable with respect to those generated using previous methods. We discuss the implications of our new definition, in particular by exploring its application to human endeavour and to biological processes including evolution. The chapter also outlines some objections to our definition that we believe may arise, and we put our rebuttals to these. Finally, we summarise the practical implementation of our definition in the context of image generation software. We explore its use to improve a computational process for generating creative images, and find when we survey the software’s users that it successfully meets human perceptions of creativity.

Extended Abstract


booktitle={Computers and Creativity},
editor={McCormack, Jon and d’Inverno, Mark},
title={Creativity Refined: Bypassing the Gatekeepers of Appropriateness and Value},
url={ },
publisher={Springer Berlin Heidelberg},
author={Dorin, Alan and Korb, KevinB.},

Used References

Albert, R. S., & Runco, M. A. (1999). A history of research on creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 16–31). New York: Cambridge University Press. Chapter 2.

Bada, J. L., & Lazcano, A. (2002). Some like it hot, but not the first biomolecules. Science, 296, 1982–1983.

Ball, P. (2001). The self-made tapestry: pattern formation in nature. Oxford: Oxford University Press.

Barrass, T. (2006). Soma (self-organising map ants). In EvoMUSART2006, 4th European workshop on evolutionary music and art.

Bentley, P. J. (2002). Is evolution creative? In P. J. Bentley & D. Corne (Eds.), Creative evolutionary systems (pp. 55–62). San Mateo: Morgan Kaufmann.

Berlyne, D. E. (1960). Novelty, uncertainty, conflict, complexity. McGraw-Hill series in psychology (pp. 18–44). New York: McGraw-Hill. Chapter 2.

Berry, R., Rungsarityotin, W., Dorin, A., Dahlstedt, P., & Haw, C. (2001). Unfinished symphonies—songs of 3.5 worlds. In E. Bilotta, E. R. Miranda, P. Pantano & P. M. Todd (Eds.), Workshop on artificial life models for musical applications, sixth European conference on artificial life (pp. 51–64). Editoriale Bios.

Boden, M. A. (2004). The creative mind, myths and mechanisms (2nd ed.). London: Routledge.

Borel, É. (1913). Mécanique statistique et irréversibilité. Journal of Physics, 3(5), 189–196.

Borgia, G. (1995). Complex male display and female choice in the spotted bowerbird: specialized functions for different bower decorations. Animal Behaviour, 49, 1291–1301.

Carroll, J. (2007). The adaptive function of literature. In C. Martindale, P. Locher & V. M. Petrov (Eds.), Evolutionary and neurocognitive approaches to aesthetics, creativity and the arts (pp. 31–45). Amityville: Baywood Publishing Company. Chapter 3.

Chamberlain, W. (1984). Getting a computer to write about itself. In S. Ditlea (Ed.), Digital Deli, the comprehensive, user-lovable menu of computer lore, culure, lifestyles and fancy. New York: Workman Publishing. Accessed 21 October 2010.

Colton, S. (2001). Automated theory formation in pure mathematics. PhD thesis, University of Edinburgh.

Colton, S., Bundy, A., & Walsh, T. (2000). On the notion of interestingness in automated mathematical discovery. International Journal of Human Computer Studies, 53(3), 351–375.

Csikszentmihalyi, M. (1999). Creativity. In R. A. Wilson & F. C. Keil (Eds.), The MIT encyclopaedia of the cognitive sciences (pp. 205–206). Cambridge: MIT Press.

Dahlstedt, P. (1999). Living melodies: coevolution of sonic communication. In A. Dorin & J. McCormack (Eds.), First iteration: a conference on generative systems in the electronic arts (pp. 56–66). Melbourne: CEMA.

Dawkins, R. (1989). The evolution of evolvability. In C. G. Langton (Ed.), Artificial life: proceedings of an interdisciplinary workshop on the synthesis and simulation of living systems (pp. 201–220). Reading: Addison-Wesley.

Dorin, A. (2004). The virtual ecosystem as generative electronic art. In G. R. Raidl, S. Cagnoni, J. Branke & D. W. Corne (Eds.), 2nd European workshop on evolutionary music and art, applications of evolutionary computing: Evo workshops, Portugal (pp. 467–476). Berlin: Springer.

Dorin, A., & Korb, K. B. (2009). A new definition of creativity. In K. Korb, M. Randall & T. Hendtlass (Eds.), LNAI: Vol. 5865. Fourth Australian conference on artificial life, Melbourne, Australia (pp. 1–10). Berlin: Springer.

Earnshaw, C. G. (1991). Mozart’s Dice Waltz. Atari users. Retrieved 21 October 2010.

Eddington, A. S. (1927). The nature of the physical world: Gifford lectures. New York: Macmillan.

Eldridge, A. (2009). You pretty little flocker. Guildford Lane Gallery.

Gracia, J. J. E. (1996). Texts: ontological status, identity, author, audience. New York: State University of New York Press.

Harnad, S. (1990). The symbol grounding problem. Physica D, 42(1–3), 335–346.

Hofstadter, D. (1995). Fluid concepts and creative analogies, computer models of the fundamental mechanisms of thought. Harper Collins: Basic Books.

Johnson-Laird, P. (1987). Reasoning, imagining and creating. Bulletin of the British Psychological Society, 40, 121–129.

Joyce, G. F. (1989). RNA evolution and the origins of life. Nature, 338, 217–224.

Kowaliw, T., Dorin, A., & McCormack, J. (2009). An empirical exploration of a definition of creative novelty for generative art. In K. Korb, M. Randall & T. Hendtlass (Eds.), LNAI: Vol. 5865. Fourth Australian conference on artificial life (ACAL 2009), Melbourne, Australia (pp. 1–10). Berlin: Springer.

Kowaliw, T., Dorin, A., & McCormack, J. (2012). Promoting creative design in interactive evolutionary computation. IEEE Transactions on Evolutionary Computation, 16(4), 523–536.

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987). Scientific discovery: computational explorations of the creative processes. Cambridge: MIT Press.

Lenat, D. B. (1983). Eurisko: a program that learns new heuristics and domain concepts: the nature of heuristics III: program design and results. Artificial Intelligence, 21, 61–98.

Maynard-Smith, J., & Szathmry, E. (1995). The major transitions in evolution. New York: Freeman.

McCormack, J. (2001). Eden: an evolutionary sonic ecosystem. In J. Kelemen & P. Sosik (Eds.), LNAI: Vol. 2159. Advances in artificial life, 6th European conference, ECAL, Prague, Czech Republic (pp. 133–142). Berlin: Springer.

Miller, G. F. (2001). Aesthetic fitness: how sexual selection shaped artistic virtuosity as a fitness indicator and aesthetic preferences as mate choice criteria. Bulletin of Psychology and the Arts. Special issue on evolution, creativity, and aesthetics, 2(1), 20–25.

Nake, F. (2002). Personal recollections of a distant beginning. In L. Candy & E. A. Edmonds (Eds.), Explorations in art and technology (p. 6). London: Springer.

Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction, the neglected process in evolution. Monographs population biology. Princeton: Princeton University Press.

Phillips, J. (1935). Succession, development, the climax, and the complex organism: an analysis of concepts: part III. The complex organism: conclusions. Journal of Ecology, 23(2), 488–508.

Putnam, H. (1979). The meaning of “meaning”, philosophical papers: mind, language and reality (Vol. 2, pp. 215–271). Cambridge: Cambridge University Press. Chapter 12.

Rowe, J., & Partridge, D. (1993). Creativity: a survey of AI approaches. Artificial Intelligence Review, 7, 43–70.

Saunders, R., & Gero, J. S. (2002). Curious agents and situated design evaluations. In J. S. Gero & F. M. T. Brazier (Eds.), Agents in design (pp. 133–149). Key Centre of Design Computing and Cognition, University of Sydney.

Schmidhuber, J. (2009). Driven by compression progress: a simple principle explains essential aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science, music, jokes.

Sims, K. (1991). Artificial evolution for computer graphics. Computer Graphics, 25(4), 319–328.

Smuts, J. C. (1927). Holism and evolution. London: Macmillan and Co.

Tatarkiewicz, W. (1980). A history of six ideas, an essay in aesthetics. Warsaw: PWN Polish Scientific Publishers.

Todd, S., & Latham, W. (1992). Evolutionary art and computers. San Diego: Academic Press.

Weesatchanam, A.-M. (2006). Are paintings by elephants really art?


Full Text

[extern file]

intern file

Sonstige Links