Evolving an Aircraft Using a Parametric Design System: Unterschied zwischen den Versionen

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche
Zeile 14: Zeile 14:
  
 
== Bibtex ==  
 
== Bibtex ==  
 
+
@incollection{
 +
year={2014},
 +
isbn={978-3-662-44334-7},
 +
booktitle={Evolutionary and Biologically Inspired Music, Sound, Art and Design},
 +
volume={8601},
 +
series={Lecture Notes in Computer Science},
 +
editor={Romero, Juan and McDermott, James and Correia, João},
 +
doi={10.1007/978-3-662-44335-4_11},
 +
title={Evolving an Aircraft Using a Parametric Design System},
 +
url={http://dx.doi.org/10.1007/978-3-662-44335-4_11 },
 +
url={http://de.evo-art.org/index.php?title=Evolving_an_Aircraft_Using_a_Parametric_Design_System },
 +
publisher={Springer Berlin Heidelberg},
 +
author={Byrne, Jonathan and Cardiff, Philip and Brabazon, Anthony and O’Neill, Michael},
 +
pages={119-130},
 +
language={English}
 +
}
  
 
== Used References ==
 
== Used References ==

Version vom 31. Oktober 2015, 14:18 Uhr


Referenz

Jonathan Byrne, Philip Cardiff, Anthony Brabazon, Michael O’Neill: Evolving an Aircraft Using a Parametric Design System. In: EvoMUSART 2014, S. 119-130.

DOI

http://link.springer.com/10.1007/978-3-662-44335-4_11

Abstract

Traditional CAD tools generate a static solution to a design problem. Parametric systems allow the user to explore many variations on that design theme. Such systems make the computer a generative design tool and are already used extensively as a rapid prototyping technique in architecture and aeronautics. Combining a design generation tool with an evolutionary algorithm provides a methodology for optimising designs. This works uses NASA’s parametric aircraft design tool (OpenVSP) and an evolutionary algorithm to evolve a range of aircraft that maximise lift and reduce drag while remaining within the framework of the original design. Our approach allows the designer to automatically optimise their chosen design and to generate models with improved aerodynamic efficiency.


Extended Abstract

Bibtex

@incollection{
year={2014},
isbn={978-3-662-44334-7},
booktitle={Evolutionary and Biologically Inspired Music, Sound, Art and Design},
volume={8601},
series={Lecture Notes in Computer Science},
editor={Romero, Juan and McDermott, James and Correia, João},
doi={10.1007/978-3-662-44335-4_11},
title={Evolving an Aircraft Using a Parametric Design System},
url={http://dx.doi.org/10.1007/978-3-662-44335-4_11 },
url={http://de.evo-art.org/index.php?title=Evolving_an_Aircraft_Using_a_Parametric_Design_System },
publisher={Springer Berlin Heidelberg},
author={Byrne, Jonathan and Cardiff, Philip and Brabazon, Anthony and O’Neill, Michael},
pages={119-130},
language={English}
}

Used References

Alpman, E.: Airfoil shape optimization using evolutionary algorithms. Aerospace Engineering Department, Pennstate University (2004)

Bensow, R.E., Bark, G.: Simulating cavitating flows with les in openfoam. In: V European Conference on Computational Fluid Dynamics, pp. 14–17 (2010)

Bollinger, K., Grohmann, M., Tessman, O.: Form, force, performance: Multi-parametric structural design. Architectural Design 78(2), 20–25 (2008)

Cardiff, P., Karač, A., Ivanković, A.: A large strain finite volume method for orthotropic bodies with general material orientations. In: Computer Methods in Applied Mechanics and Engineering (2013)

Day, M.: Grasshopper, generative modelling (2010), http://www.grasshopper3d.com/

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002) ISSN 1089-778X

Dulikravich, G.S.: Aerodynamic shape design and optimization-status and trends. Journal of Aircraft 29(6), 1020–1026 (1992)

Gloudemans, J.R., Davis, P.C., Gelhausen, P.A.: A rapid geometry modeler for conceptual aircraft. In: 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, January, pp. 15–18 (1996)

Holzer, D., Hough, R., Burry, M.: Parametric design and structural optimisation for early design exploration. International Journal of Architectural Computing 5(4), 625–643 (2007)

Jacobs, E.N., Ward, K.E., Pinkerton, R.M.: The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. Technical report, DTIC Document (1933)

Kicinger, R., Arciszewski, T., De Jong, K.: Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures 83(23-24), 1943–1978 (2005), ISSN 0045-7949, doi: 10.1016/j.compstruc.2005.03.002

Andy Ko, Y.-Y.: The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft. PhD thesis, Virginia Polytechnic Institute and State University (2003)

Lawson, B.: How designers think: the design process demystified. Elsevier/Architectural (2006), ISBN 9780750660778, http://books.google.ie/books?id=lPvqZJNAdG8C

Naujoks, B., Willmes, L., Haase, W., Bäck, T., Schütz, M.: Multi-point airfoil optimization using evolution strategies. In: Proc. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000)(CD-Rom and Book of Abstracts), p. 948 (2000)

Obayashi, S.: Multidisciplinary design optimization of aircraft wing planform based on evolutionary algorithms. In: 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, pp. 3148–3153. IEEE (1998)

Parmee, I.C., Watson, A.H.: Preliminary airframe design using co-evolutionary multiobjective genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1657–1665 (1999)

Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer 15(10), 1787–1806 (1972), http://www.sciencedirect.com/science/article/pii/0017931072900543 , doi: http://dx.doi.org/10.1016/0017-9310(72)90054-3, ISSN 0017-9310

Quagliarella, D., D’ambrosio, D., Iollo, A.: Airfoil design using navier-stokes equations and hybrid evolutionary optimization techniques. Technical report, DTIC Document (2003)

Rogalsky, T., Derksen, R.W., Kocabiyik, S.: An aerodynamic design technique for optimizing fan blade spacing. In: Proceedings of the 7th Annual Conference of the Computational Fluid Dynamics Society of Canada, pp. 2–29. Citeseer (1999)

Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven generative design tools. Automation in Construction 14(2), 253–264 (2005) ISSN 0926-5805

Simon, H.A.: The sciences of the artificial. The MIT Press (1996)

Oasys Software. GSA, structural analysis version 8.5 (2011), http://www.oasys-software.com/gsa-analysis.html

Bentley Sytems. Generative components, v8i (2011), http://www.bentley.com/getgc/

Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12, 620 (1998)

Wüthrich, B., Lee, Y.: Simulation and validation of compressible flow in nozzle geometries and validation of OpenFOAM for this application. PhD thesis, ETH, Swiss Federal Institute of Technology Zurich, Institute of Fluid Dynamics (2007)

Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolutionary Computation 3(4), 257–271 (1999)

Links

Full Text

[extern file]

intern file

Sonstige Links

Jonathan Byrne: Evolving an Aircraft Using a Parametric Design System. html-Presentation