Immersion in Mathematics: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „ == Reference == Judy Holdener: Immersion in Mathematics. In: Bridges 2016, Pages 25–32. == DOI == == Abstract == In this article I describe the …“) |
(→Bibtex) |
||
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 12: | Zeile 12: | ||
== Bibtex == | == Bibtex == | ||
− | @inproceedings{bridges2016:25, | + | @inproceedings{bridges2016:25, |
author = {Judy Holdener}, | author = {Judy Holdener}, | ||
title = {Immersion in Mathematics}, | title = {Immersion in Mathematics}, | ||
Zeile 23: | Zeile 23: | ||
publisher = {Tessellations Publishing}, | publisher = {Tessellations Publishing}, | ||
address = {Phoenix, Arizona}, | address = {Phoenix, Arizona}, | ||
− | url = {http://de.evo-art.org/index.php?title=Immersion_in_Mathematics}, | + | url = {http://de.evo-art.org/index.php?title=Immersion_in_Mathematics }, |
note = {Available online at \url{http://archive.bridgesmathart.org/2016/bridges2016-25.html}} | note = {Available online at \url{http://archive.bridgesmathart.org/2016/bridges2016-25.html}} | ||
− | } | + | } |
− | |||
== Used References == | == Used References == |
Aktuelle Version vom 27. Dezember 2016, 12:14 Uhr
Inhaltsverzeichnis
Reference
Judy Holdener: Immersion in Mathematics. In: Bridges 2016, Pages 25–32.
DOI
Abstract
In this article I describe the meaning of my digital work of mathematical art titled “Immersion.”
Extended Abstract
Bibtex
@inproceedings{bridges2016:25, author = {Judy Holdener}, title = {Immersion in Mathematics}, pages = {25--32}, booktitle = {Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture}, year = {2016}, editor = {Eve Torrence, Bruce Torrence, Carlo S\'equin, Douglas McKenna, Krist\'of Fenyvesi and Reza Sarhangi}, isbn = {978-1-938664-19-9}, issn = {1099-6702}, publisher = {Tessellations Publishing}, address = {Phoenix, Arizona}, url = {http://de.evo-art.org/index.php?title=Immersion_in_Mathematics }, note = {Available online at \url{http://archive.bridgesmathart.org/2016/bridges2016-25.html}} }
Used References
[1] H. Abelson and A.A. diSessa, Turtle Geometry, MIT Press Series in Artificial Intelligence, (1981), MIT Press.
[2] W. Boy, “Ueberdie Curvatura integra und die Topologie geschlossener Flaechen.” Math. Annalen, 57 (1903), pp. 151-184.
[3] J. Holdener and M. Snipes, “Sources of Flow as Sources of Symmetry: Divergence Patterns of Sinusoidal Vector Fields,” Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, (2014), Tessellations Publishing, pp. 409–412, http://archive.bridgesmathart.org/ 2014/bridges2014-409.pdf (as of Jan. 4, 2015).
[4] L. Kennard, M. Zaremsky, and J. Holdener, “Generalized Thue-Morse sequences and the von Koch Curve,” International Journal of Pure and Applied Mathematics, 37(3), (2008).
[5] J. Ma and J. Holdener, “When Thue-Morse meets Koch,” Fractals: Complex Geometry, Patterns, and Scaling in Nature and Society, 13 (2005), pp. 191–206.
Links
Full Text
http://archive.bridgesmathart.org/2016/bridges2016-25.pdf