Algorithms for Morphing Escher-Like Tessellations: Unterschied zwischen den Versionen

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „== Reference == Kevin Lee: Algorithms for Morphing Escher-Like Tessellations. In: Bridges 2015. Pages 483–486 == DOI == == Abstract == Inspired b…“)
 
(Bibtex)
 
Zeile 21: Zeile 21:
 
   publisher  = {Tessellations Publishing},
 
   publisher  = {Tessellations Publishing},
 
   address    = {Phoenix, Arizona},
 
   address    = {Phoenix, Arizona},
   note        = {Available online at \url{http://archive.bridgesmathart.org/2015/bridges2015-483.html}}
+
   note        = {Available online at \url{http://archive.bridgesmathart.org/2015/bridges2015-483.html }},
 +
  url        = {http://de.evo-art.org/index.php?title=Algorithms_for_Morphing_Escher-Like_Tessellations },
 
  }
 
  }
  

Aktuelle Version vom 30. Oktober 2015, 22:42 Uhr

Reference

Kevin Lee: Algorithms for Morphing Escher-Like Tessellations. In: Bridges 2015. Pages 483–486

DOI

Abstract

Inspired by the way M.C. Escher combined metamorphosis and regular division in his art, I explore linear and non-linear algorithms that automatically morph tiles from the base polygon to a final shape. The morphing can be visualized as an animation or as a parquet deformation.. The final algorithm involves an interactive cubic spline, path-based editor that gives the artist fine control over the intermediate morph frames.

Extended Abstract

Bibtex

@inproceedings{bridges2015:483,
 author      = {Kevin Lee},
 title       = {Algorithms for Morphing Escher-Like Tessellations},
 pages       = {483--486},
 booktitle   = {Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture},
 year        = {2015},
 editor      = {Kelly Delp, Craig S. Kaplan, Douglas McKenna and Reza Sarhangi},
 isbn        = {978-1-938664-15-1},
 issn        = {1099-6702},
 publisher   = {Tessellations Publishing},
 address     = {Phoenix, Arizona},
 note        = {Available online at \url{http://archive.bridgesmathart.org/2015/bridges2015-483.html }},
 url         = {http://de.evo-art.org/index.php?title=Algorithms_for_Morphing_Escher-Like_Tessellations },
}

Used References

[1] Bruce Bilney, Curly Elephants Tessellations, http://www.ozzigami.com.au/tessellations.html (as of April 20, 2015)

[2] Craig S. Kaplan. Curve Evolutions Schemes for Parquet Deformations. In Bridges 2010: Mathematical Connections in Art, Music and Science, pages 95-102, 2010.

[3] Craig S. Kaplan. Metamorphosis in Escher’s art. In Bridges 2008: Mathematical Connections in Art, Music and Science, pages 39–46, 2008.

[4] Doris Schattschneider. M.C. Escher: Visions of Symmetry. Harry N. Abrams, second edition, 2004.

[5] Kevin D. Lee. Tile Types in TesselManiac, http://www.tesselmaniac.com/tess/Tile_Types.html, (as of April 20, 2015)

[6] Kevin D. Lee TesselManiac! 2014 http://www.tesselmaniac.com (as of April 20, 2015)

[7] Thomas W. Sederberg, Peisheng Gao, Guojin Wang, and Hong Mu. 2D shape blending: An intrinsic solution to the vertex path problem. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 15–18, Aug 1993


Links

Full Text

http://archive.bridgesmathart.org/2015/bridges2015-483.pdf

intern file

Sonstige Links

http://archive.bridgesmathart.org/2015/bridges2015-483.html