Interactive Evolutionary Design of Motion Variants: Unterschied zwischen den Versionen

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche
 
Zeile 3: Zeile 3:
  
 
== DOI ==
 
== DOI ==
http://link.springer.com/chapter/10.1007%2F978-3-642-20206-3_9
 
  
 
== Abstract ==
 
== Abstract ==
We present an intuitive method for novice users to interactively design custom populations of stylized, heterogeneous motion, from one input motion. The user sets up lattice deformers which are used by a genetic algorithm to manipulate the animation channels of the input motion and create new motion variants. Our interactive evolutionary design environment allows the user to traverse the available space of possibilities, presents the user with populations of motion, and gradually converges to a satisfactory set of solutions. Each generated motion can undergo a filtering process subject to user-specified, high-level metrics to produce a result crafted to fit the designer’s interest. We demonstrate application to both character animation and particle systems.
+
This paper presents an intuitive method for novice users to interactively design custom populations of stylized,
 +
heterogeneous motion, from one input motion clip, thus allowing the user to amplify an existing database of
 +
motions. We allow the user to set up lattice deformers which are used by a genetic algorithm to manipulate
 +
the animation channels of the input motion and create new motion variations. Our interactive evolutionary
 +
design environment allows the user to traverse the available space of possible motions, presents the user with
 +
populations of motion, and gradually converges to a satisfactory set of solutions. Each generated motion
 +
sequence can undergo a motion filtering process subject to user-specified, high-level metrics to produce a
 +
result crafted to fit the designer’s interest.
  
 
== Extended Abstract ==
 
== Extended Abstract ==
Zeile 13: Zeile 19:
  
 
== Used References ==
 
== Used References ==
Sims, K.: Evolving 3d morphology and behavior by competition. Artificial Life 1(4), 353–372 (1994) http://dx.doi.org/10.1162/artl.1994.1.4.353
+
Amaya, K., Bruderlin, A., and Calvert, T. (1996). Emotion
   
+
from motion. In Graphics Interface ’96, pages 222– 229.  
Gritz, L., Hahn, J.K.: Genetic programming for articulated figure motion. Journal of Visualization and Computer Animation 6, 129–142 (1995) http://dx.doi.org/10.1002/vis.4340060303
+
 
   
+
Bezirtzis, B. G., Lewis, M., and Christeson, C. (2007). In-
Sims, K.: Interactive evolution of equations for procedural models. The Visual Computer 9(8), 466–476 (1993) http://dx.doi.org/10.1007/BF01888721
+
teractive evolution for industrial design. In C&C ’07:  
   
+
Proceedings of the 6th ACM SIGCHI Conference on  
Lim, I.S., Thalmann, D.: Tournament selection for browsing temporal signals. In: Proceedings of Symposium on Applied Computing 2000, pp. 570–573. ACM, New York (2000) http://dx.doi.org/10.1145/338407.338499
+
Creativity & Cognition, pages 183–192, New York,
   
+
NY, USA. ACM.  
Lim, I.S., Thalmann, D.: Pro-actively interactive evolution for computer animation. In: Proceedings of Computer Animation and Simulation 1999, pp. 45–52 (1999)
+
 
   
+
Chi, D., Costa, M., Zhao, L., and Badler, N. (2000). The
Ventrella, J.: Disney meets darwin-the evolution of funny animated figures. Computer Animation (1995)
+
emote model for effort and shape. In SIGGRAPH ’00
   
+
Proceedings, pages 173–182, New York, NY, USA.
Marks, J., et al.: Design galleries: a general approach to setting parameters for computer graphics and animation. In: Proceedings of SIGGRAPH 1997, pp. 389–400. ACM Press/Addison-Wesley Publishing Co., New York (1997) http://dx.doi.org/10.1145/258734.258887
+
ACM Press/Addison-Wesley Publishing Co.
   
+
 
Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 3–37. Springer, Heidelberg (2007)
+
Gleicher, M. (2001). Comparing constraint-based motion
   
+
editing methods. Graphical Models, 63(2):107–134.  
Amaya, K., Bruderlin, A., Calvert, T.: Emotion from motion. In: Graphics Interface 1996, pp. 222–229 (1996)
+
 
   
+
Ko, H. and Badler, N. I. (1996). Animating human locomo-
Sung, M.: Continuous motion graph for crowd simulation. In: Hui, K.-c., Pan, Z., Chung, R.C.-k., Wang, C.C.L., Jin, X., Göbel, S., Li, E.C.-L. (eds.) EDUTAINMENT 2007. LNCS, vol. 4469, pp. 202–213. Springer, Heidelberg (2007) http://dx.doi.org/10.1007/978-3-540-73011-8_22
+
tion with inverse dynamics. Computer Graphics and  
   
+
Applications, IEEE, 16(2):50–59.
Chi, D., Costa, M., Zhao, L., Badler, N.: The emote model for effort and shape. In: Proceedings of SIGGRAPH 2000, pp. 173–182. ACM Press/Addison-Wesley Publishing Co., New York (2000) http://dx.doi.org/10.1145/344779.352172
+
 
   
+
Kovar, L., Gleicher, M., and Pighin, F. (2002). Motion
Neff, M., Fiume, E.: Aer: aesthetic exploration and refinement for expressive character animation. In: Proceedings of SCA 2005, pp. 161–170. ACM Press, New York (2005)
+
graphs. In SIGGRAPH ’02 Proceedings, volume 21,
   
+
pages 473–482, New York, NY, USA. ACM Press.
Wang, J., Drucker, S.M., Agrawala, M., Cohen, M.F.: The cartoon animation filter. ACM Transactions on Graphics 25(3), 1169–1173 (2006) http://dx.doi.org/10.1145/1141911.1142010
+
 
   
+
Kwon, T., Lee, K. H., Lee, J., and Takahashi, S. (2008).
Gleicher, M.: Comparing constraint-based motion editing methods. Graphical Models 63(2), 107–134 (2001) http://dx.doi.org/10.1006/gmod.2001.0549
+
Group motion editing. In SIGGRAPH ’08 Proceed-
   
+
ings, pages 1–8, New York, NY, USA. ACM.
Kwon, T., Lee, K.H., Lee, J., Takahashi, S.: Group motion editing. In: Proceedings of SIGGRAPH 2008, pp. 1–8. ACM, New York (2008) http://dx.doi.org/10.1145/1399504.1360679
+
 
   
+
Li, T.-Y. and Wang, C.-C. (2007). An evolutionary ap-
Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. ACM Transactions on Graphics 25(3), 1160–1168 (2006) http://dx.doi.org/10.1145/1141911.1142008
+
proach to crowd simulation. In Autonomous Robots
   
+
and Agents, pages 119–126.
Li, T.Y., Wang, C.C.: An evolutionary approach to crowd simulation. Autonomous Robots and Agents, 119–126 (2007)
+
 
   
+
Lim, I. S. and Thalmann, D. (2000). Tournament selec-
Sung, M., Kovar, L., Gleicher, M.: Fast and accurate goal-directed motion synthesis for crowds. In: Proceedings of Symposium on Computer Animation 2005, pp. 291–300. ACM Press, New York (2005)
+
tion for browsing temporal signals. In Symposium on
   
+
Applied Computing ’00 Proceedings, pages 570–573,
Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7(2), 152–164 (2001) http://dx.doi.org/10.1109/2945.928167
+
New York, NY, USA. ACM.
   
+
 
Massive Software: Massive prime (2009), www.massivesoftware.com/prime
+
Marks, J. et al. (1997). Design galleries: a general ap-
   
+
proach to setting parameters for computer graphics
Sims, K.: Artificial evolution for computer graphics. In: Proceedings of SIGGRAPH 1991, vol. 25, pp. 319–328. ACM Press, New York (1991) http://dx.doi.org/10.1145/122718.122752
+
and animation. In SIGGRAPH ’97 Proceedings, pages
 
+
389–400, New York, NY, USA. ACM Press/Addison-
Hastings, E.J., Guha, R.K., Stanley, K.O.: Neat particles: Design, representation, and animation of particle system effects. In: IEEE CIG 2007 (2007)
+
Wesley Publishing Co.
   
+
 
Hastings, E.J., Guha, R.K., Stanley, K.O.: Interactive evolution of particle systems for computer graphics and animation. Trans. Evol. Comp. 13(2), 418–432 (2009) http://dx.doi.org/10.1109/TEVC.2008.2004261
+
Massive Software (2009). Massive prime. Accessed online
   
+
www.massivesoftware.com/prime/.
Bezirtzis, B.G., Lewis, M., Christeson, C.: Interactive evolution for industrial design. In: C&C 2007:Proceedings of the 6th ACM SIGCHI Conference on Creativity & Cognition, pp. 183–192. ACM, New York (2007) http://dx.doi.org/10.1145/1254960.1254986
+
 
   
+
Mcdonnell, R., Larkin, M., Dobbyn, S., Collins, S., and
Tufte, E.R.: Envisioning Information. Graphics Press (May 1990)
+
O’Sullivan, C. (2008). Clone attack! perception of
   
+
crowd variety. In SIGGRAPH ’08 Proceedings, vol-
Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Proceedings of SIGGRAPH 1986, vol. 20(4), pp. 151–160 (1986)
+
ume 27, pages 1–8, New York, NY, USA. ACM.
   
+
 
Tak, S., Song, O.Y., Ko, H.S.: Spacetime sweeping: An interactive dynamic constraints solver. In: Proceedings of Computer Animation 2002, pp. 261–271. IEEE Computer Society, Washington, DC (2002)
+
M ̈uller, A. (2004). Collision avoiding continuation method
   
+
for the inverse kinematics of redundant manipulators.
Müller, A.: Collision avoiding continuation method for the inverse kinematics of redundant manipulators. In: Proceedings of Robotics and Automation 2004, vol. 2, pp. 1593–1598 (2004)
+
In Robotics and Automation ’04 Proceedings, vol-
   
+
ume 2, pages 1593–1598 Vol.2.
Mcdonnell, R., Larkin, M., Dobbyn, S., Collins, S., O’Sullivan, C.: Clone attack! perception of crowd variety. In: Proceedings of SIGGRAPH 2008, vol. 27, pp. 1–8. ACM Press, New York (2008) http://dx.doi.org/10.1145/1399504.1360625
+
 
 
+
Musse, S. R. and Thalmann, D. (2001). Hierarchical model
Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: Proceedings of SIGGRAPH 2002, vol. 21, pp. 473–482. ACM Press, New York (2002) http://dx.doi.org/10.1145/566570.566605
+
for real time simulation of virtual human crowds. Vi-
   
+
sualization and Computer Graphics, IEEE Transac-
Ko, H., Badler, N.I.: Animating human locomotion with inverse dynamics. IEEE Computer Graphics and Applications 16(2), 50–59 (1996) http://dx.doi.org/10.1109/38.486680
+
tions, 7(2):152–164.
 +
 
 +
Neff, M. and Fiume, E. (2005). Aer: aesthetic explo-
 +
ration and refinement for expressive character anima-
 +
tion. In SCA ’05: Proceedings of the 2005 ACM SIG-
 +
GRAPH/Eurographics symposium on Computer ani-
 +
mation, pages 161–170, New York, NY, USA. ACM
 +
Press.
 +
 
 +
Sims, K. (1993). Interactive evolution of equations for pro-
 +
cedural models. The Visual Computer, 9(8):466–476.
 +
 
 +
Sung, M. (2007). Continuous motion graph for crowd sim-
 +
ulation. In Technologies for E-Learning and Dig-
 +
ital Entertainment, volume 4469, pages 202–213.
 +
Springer Berlin / Heidelberg.
 +
 
 +
Sung, M., Kovar, L., and Gleicher, M. (2005). Fast and
 +
accurate goal-directed motion synthesis for crowds. In
 +
Symposium on Computer Animation ’05 Proceedings,
 +
pages 291–300, New York, NY, USA. ACM Press.
 +
 
 +
Tak, S., Song, O.-Y., and Ko, H.-S. (2002). Spacetime
 +
sweeping: An interactive dynamic constraints solver.
 +
In Computer Animation ’02 Proceedings, pages 261–
 +
271, Washington, DC, USA. IEEE Computer Society.
 +
 
 +
Treuille, A., Cooper, S., and Popovic, Z. (2006). Continuum
 +
crowds. ACM Transactions on Graphics, 25(3):1160–1168.
 +
 
 +
Ventrella, J. (1995). Disney meets darwin-the evolution of
 +
funny animated figures. Computer Animation, 00.
 +
 
 +
Wang, J., Drucker, S. M., Agrawala, M., and Cohen, M. F.
 +
(2006). The cartoon animation filter. ACM Transac-
 +
tions on Graphics, 25(3):1169–1173.
  
  

Aktuelle Version vom 9. Januar 2015, 23:11 Uhr

Reference

Jonathan Eisenmann, Matthew Lewis, Bryan Cline: Interactive Evolutionary Design of Motion Variants. IJCCI 2009: 127-134.

DOI

Abstract

This paper presents an intuitive method for novice users to interactively design custom populations of stylized, heterogeneous motion, from one input motion clip, thus allowing the user to amplify an existing database of motions. We allow the user to set up lattice deformers which are used by a genetic algorithm to manipulate the animation channels of the input motion and create new motion variations. Our interactive evolutionary design environment allows the user to traverse the available space of possible motions, presents the user with populations of motion, and gradually converges to a satisfactory set of solutions. Each generated motion sequence can undergo a motion filtering process subject to user-specified, high-level metrics to produce a result crafted to fit the designer’s interest.

Extended Abstract

Bibtex

Used References

Amaya, K., Bruderlin, A., and Calvert, T. (1996). Emotion from motion. In Graphics Interface ’96, pages 222– 229.

Bezirtzis, B. G., Lewis, M., and Christeson, C. (2007). In- teractive evolution for industrial design. In C&C ’07: Proceedings of the 6th ACM SIGCHI Conference on Creativity & Cognition, pages 183–192, New York, NY, USA. ACM.

Chi, D., Costa, M., Zhao, L., and Badler, N. (2000). The emote model for effort and shape. In SIGGRAPH ’00 Proceedings, pages 173–182, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

Gleicher, M. (2001). Comparing constraint-based motion editing methods. Graphical Models, 63(2):107–134.

Ko, H. and Badler, N. I. (1996). Animating human locomo- tion with inverse dynamics. Computer Graphics and Applications, IEEE, 16(2):50–59.

Kovar, L., Gleicher, M., and Pighin, F. (2002). Motion graphs. In SIGGRAPH ’02 Proceedings, volume 21, pages 473–482, New York, NY, USA. ACM Press.

Kwon, T., Lee, K. H., Lee, J., and Takahashi, S. (2008). Group motion editing. In SIGGRAPH ’08 Proceed- ings, pages 1–8, New York, NY, USA. ACM.

Li, T.-Y. and Wang, C.-C. (2007). An evolutionary ap- proach to crowd simulation. In Autonomous Robots and Agents, pages 119–126.

Lim, I. S. and Thalmann, D. (2000). Tournament selec- tion for browsing temporal signals. In Symposium on Applied Computing ’00 Proceedings, pages 570–573, New York, NY, USA. ACM.

Marks, J. et al. (1997). Design galleries: a general ap- proach to setting parameters for computer graphics and animation. In SIGGRAPH ’97 Proceedings, pages 389–400, New York, NY, USA. ACM Press/Addison- Wesley Publishing Co.

Massive Software (2009). Massive prime. Accessed online www.massivesoftware.com/prime/.

Mcdonnell, R., Larkin, M., Dobbyn, S., Collins, S., and O’Sullivan, C. (2008). Clone attack! perception of crowd variety. In SIGGRAPH ’08 Proceedings, vol- ume 27, pages 1–8, New York, NY, USA. ACM.

M ̈uller, A. (2004). Collision avoiding continuation method for the inverse kinematics of redundant manipulators. In Robotics and Automation ’04 Proceedings, vol- ume 2, pages 1593–1598 Vol.2.

Musse, S. R. and Thalmann, D. (2001). Hierarchical model for real time simulation of virtual human crowds. Vi- sualization and Computer Graphics, IEEE Transac- tions, 7(2):152–164.

Neff, M. and Fiume, E. (2005). Aer: aesthetic explo- ration and refinement for expressive character anima- tion. In SCA ’05: Proceedings of the 2005 ACM SIG- GRAPH/Eurographics symposium on Computer ani- mation, pages 161–170, New York, NY, USA. ACM Press.

Sims, K. (1993). Interactive evolution of equations for pro- cedural models. The Visual Computer, 9(8):466–476.

Sung, M. (2007). Continuous motion graph for crowd sim- ulation. In Technologies for E-Learning and Dig- ital Entertainment, volume 4469, pages 202–213. Springer Berlin / Heidelberg.

Sung, M., Kovar, L., and Gleicher, M. (2005). Fast and accurate goal-directed motion synthesis for crowds. In Symposium on Computer Animation ’05 Proceedings, pages 291–300, New York, NY, USA. ACM Press.

Tak, S., Song, O.-Y., and Ko, H.-S. (2002). Spacetime sweeping: An interactive dynamic constraints solver. In Computer Animation ’02 Proceedings, pages 261– 271, Washington, DC, USA. IEEE Computer Society.

Treuille, A., Cooper, S., and Popovic, Z. (2006). Continuum crowds. ACM Transactions on Graphics, 25(3):1160–1168.

Ventrella, J. (1995). Disney meets darwin-the evolution of funny animated figures. Computer Animation, 00.

Wang, J., Drucker, S. M., Agrawala, M., and Cohen, M. F. (2006). The cartoon animation filter. ACM Transac- tions on Graphics, 25(3):1169–1173.


Links

Full Text

http://accad.osu.edu/Projects/Evo/motionVariants.pdf

intern file

Sonstige Links