A Domain Independent Genetic Programming Approach to Automatic Feature Extraction for Image Classification: Unterschied zwischen den Versionen

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche
Zeile 16: Zeile 16:
  
 
M. Zhang and U. Bhowan, Program size and pixel statistics in genetic programming for object detection, in Applications of Evolutionary Computing, ser. Lecture Notes in Computer Science,  G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. D. Smith, and G. Squillero, Eds. Springer Berlin/Heidelberg, 2004, vol. 3005, pp. 379-388, http://link.springer.com/chapter/10.1007%2F978-3-540-24653-4_39
 
M. Zhang and U. Bhowan, Program size and pixel statistics in genetic programming for object detection, in Applications of Evolutionary Computing, ser. Lecture Notes in Computer Science,  G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. D. Smith, and G. Squillero, Eds. Springer Berlin/Heidelberg, 2004, vol. 3005, pp. 379-388, http://link.springer.com/chapter/10.1007%2F978-3-540-24653-4_39
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
M. Zhang and P. Wong, Explicitly simplifying evolved genetic programs during evolution, International Journal of Computational Intelligence and Applications, vol. 7, no. 2, pp. 1-32, 2008. http://dx.doi.org/10.1142/S1469026808002247
 +
 +
D. Kinzett, M. Johnston, and M. Zhang, Numerical simplification for bloat control and analysis of building blocks in genetic programming, Evolutionary Intelligence, vol. 2, no. 4, pp. 151-168, Dec. 2009, special Issue. http://dx.doi.org/10.1007/s12065-009-0029-9
 +
 +
D. Kinzett, M. Zhang, and M. Johnston, Investigation of simplification threshold and noise level of input data in numerical simplification of genetic programs, in IEEE Congress on Evolutionary Computation (CEC 2010). Barcelona, Spain: IEEE Press, 18-23 Jul. 2010. http://dx.doi.org/10.1109/CEC.2010.5586181
 +
 +
 +
  
  

Version vom 23. November 2014, 17:37 Uhr

Reference

Daniel Atkins and Kourosh Neshatian and Mengjie Zhang: A Domain Independent Genetic Programming Approach to Automatic Feature Extraction for Image Classification. Proceedings of the 2011 IEEE Congress on Evolutionary Computation, pp. 238-245, IEEE Press, 5-8 June 2011.

DOI

http://dx.doi.org/10.1109/CEC.2011.5949624

Abstract

In this paper we explore the application of Genetic Programming (GP) to the problem of domain-independent image feature extraction and classification. We propose a new GP based image classification system that extracts image features autonomously, and compare its performance against a baseline GP-based classifier system that uses human-extracted features. We found that the proposed system has a similar performance to the baseline system, and that GP is capable of evolving a single program that can both extract useful features and use those features to classify an image.

Extended Abstract

Bibtex

Used References

P. Espejo, S. Ventura, and F. Herrera, A survey on the application of genetic programming to classification, Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 40, no. 2, pp. 121-144, 2010. http://dx.doi.org/10.1109/TSMCC.2009.2033566

M. Zhang and U. Bhowan, Program size and pixel statistics in genetic programming for object detection, in Applications of Evolutionary Computing, ser. Lecture Notes in Computer Science, G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. D. Smith, and G. Squillero, Eds. Springer Berlin/Heidelberg, 2004, vol. 3005, pp. 379-388, http://link.springer.com/chapter/10.1007%2F978-3-540-24653-4_39






M. Zhang and P. Wong, Explicitly simplifying evolved genetic programs during evolution, International Journal of Computational Intelligence and Applications, vol. 7, no. 2, pp. 1-32, 2008. http://dx.doi.org/10.1142/S1469026808002247

D. Kinzett, M. Johnston, and M. Zhang, Numerical simplification for bloat control and analysis of building blocks in genetic programming, Evolutionary Intelligence, vol. 2, no. 4, pp. 151-168, Dec. 2009, special Issue. http://dx.doi.org/10.1007/s12065-009-0029-9

D. Kinzett, M. Zhang, and M. Johnston, Investigation of simplification threshold and noise level of input data in numerical simplification of genetic programs, in IEEE Congress on Evolutionary Computation (CEC 2010). Barcelona, Spain: IEEE Press, 18-23 Jul. 2010. http://dx.doi.org/10.1109/CEC.2010.5586181



Links

Full Text

[extern file]

intern file

Sonstige Links