Unexpected Beauty Hidden in Radin-Conway's Pinwheel Tiling: Unterschied zwischen den Versionen
Aus de_evolutionary_art_org
(Die Seite wurde neu angelegt: „== Reference == Douglas G. Burkholder: Unexpected Beauty Hidden in Radin-Conway's Pinwheel Tiling. In: Bridges 2015. Pages 383–386 == DOI == == Ab…“) |
(kein Unterschied)
|
Version vom 24. Oktober 2015, 22:56 Uhr
Inhaltsverzeichnis
Reference
Douglas G. Burkholder: Unexpected Beauty Hidden in Radin-Conway's Pinwheel Tiling. In: Bridges 2015. Pages 383–386
DOI
Abstract
In 1994, John Conway and Charles Radin created a non-periodic Pinwheel Tiling of the plane using only 1 by 2 right triangles. By selectively painting either every fifth triangle or two out of every five triangles, based only upon their location in the next larger triangle, one can discern 15 unexpected and distinctive patterns. Each of these patterns retains the non-periodic nature of the original tiling.
Extended Abstract
Bibtex
@inproceedings{bridges2015:383, author = {Douglas G. Burkholder}, title = {Unexpected Beauty Hidden in Radin-Conway's Pinwheel Tiling}, pages = {383--386}, booktitle = {Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture}, year = {2015}, editor = {Kelly Delp, Craig S. Kaplan, Douglas McKenna and Reza Sarhangi}, isbn = {978-1-938664-15-1}, issn = {1099-6702}, publisher = {Tessellations Publishing}, address = {Phoenix, Arizona}, note = {Available online at \url{http://archive.bridgesmathart.org/2015/bridges2015-383.html}} }
Used References
Charles Radin, The Pinwheel Tilings of the Plane, Annals of Mathematics, Vol. 139, 1994, pp. 661-702.
Links
Full Text
http://archive.bridgesmathart.org/2015/bridges2015-383.pdf