Chains of Antiprisms: Unterschied zwischen den Versionen

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „== Reference == Tom Verhoeff and Melle Stoel: Chains of Antiprisms. In: Bridges 2015. Pages 347–350 == DOI == == Abstract == We prove a property …“)
 
(Bibtex)
 
Zeile 21: Zeile 21:
 
   publisher  = {Tessellations Publishing},
 
   publisher  = {Tessellations Publishing},
 
   address    = {Phoenix, Arizona},
 
   address    = {Phoenix, Arizona},
   note        = {Available online at \url{http://archive.bridgesmathart.org/2015/bridges2015-347.html}}
+
   note        = {Available online at \url{http://archive.bridgesmathart.org/2015/bridges2015-347.html }},
 +
  url        = {http://de.evo-art.org/index.php?title=Chains_of_Antiprisms },
 
  }
 
  }
  

Aktuelle Version vom 30. Oktober 2015, 22:38 Uhr

Reference

Tom Verhoeff and Melle Stoel: Chains of Antiprisms. In: Bridges 2015. Pages 347–350

DOI

Abstract

We prove a property of antiprism chains and show some artwork based on this property.

Extended Abstract

Bibtex

@inproceedings{bridges2015:347,
 author      = {Tom Verhoeff and Melle Stoel},
 title       = {Chains of Antiprisms},
 pages       = {347--350},
 booktitle   = {Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture},
 year        = {2015},
 editor      = {Kelly Delp, Craig S. Kaplan, Douglas McKenna and Reza Sarhangi},
 isbn        = {978-1-938664-15-1},
 issn        = {1099-6702},
 publisher   = {Tessellations Publishing},
 address     = {Phoenix, Arizona},
 note        = {Available online at \url{http://archive.bridgesmathart.org/2015/bridges2015-347.html }},
 url         = {http://de.evo-art.org/index.php?title=Chains_of_Antiprisms },
}

Used References

[1] Melle Stoel. Corkscrew. Bridges 2014 Art Exhibition. http://gallery.bridgesmathart.org/ exhibitions/2014-bridges-conference/mellestoel (accessed 15 Mar 2015).

[2] Melle Stoel. Closed Loops of Antiprisms. Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, pp.285–292.

[3] B. M. Stewart. Adventures Among the Toroids: A Study of Quasi-Convex, Aplanar, Tunneled Orientable Polyhedra of Positive Genus Having Regular Faces With Disjoint Interiors (2nd Ed.). Self-published, 1980.

[4] Wikipedia contributors. Antiprism— Wikipedia, The Free Encyclopedia. https://en.wikipedia. org/wiki/Antiprism (accessed 15 Mar 2015).


Links

Full Text

http://archive.bridgesmathart.org/2015/bridges2015-347.pdf

intern file

Sonstige Links

http://archive.bridgesmathart.org/2015/bridges2015-347.html