A Comparison Between Representations for Evolving Images: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „ == Referenz == Alessandro Re, Mauro Castelli, Leonardo Vanneschi: A Comparison Between Representations for Evolving Images. In: EvoMUSART 2016, 163-1…“) |
(kein Unterschied)
|
Version vom 1. Juni 2016, 19:24 Uhr
Inhaltsverzeichnis
Referenz
Alessandro Re, Mauro Castelli, Leonardo Vanneschi: A Comparison Between Representations for Evolving Images. In: EvoMUSART 2016, 163-185.
DOI
http://dx.doi.org/10.1007/978-3-319-31008-4_12
Abstract
Evolving images using genetic programming is a complex task and the representation of the solutions has an important impact on the performance of the system. In this paper, we present two novel representations for evolving images with genetic programming. Both these representations are based on the idea of recursively partitioning the space of an image. This idea distinguishes these representations from the ones that are currently most used in the literature. The first representation that we introduce partitions the space using rectangles, while the second one partitions using triangles. These two representations are compared to one of the most well known and frequently used expression-based representations, on five different test cases. The presented results clearly indicate the appropriateness of the proposed representations for evolving images. Also, we give experimental evidence of the fact that the proposed representations have a higher locality compared to the compared expression-based representation.
Extended Abstract
Bibtex
@incollection{ year={2016}, isbn={978-3-319-31007-7}, booktitle={Evolutionary and Biologically Inspired Music, Sound, Art and Design}, volume={9596}, series={Lecture Notes in Computer Science}, editor={Johnson, Colin and Ciesielski, Vic and Correia, João and Machado, Penousal}, doi={http://dx.doi.org/10.1007/978-3-319-16498-4_12}, title={A Comparison Between Representations for Evolving Images}, url={http://link.springer.com/chapter/10.1007/978-3-319-31008-4_12 http://de.evo-art.org/index.php?title=A_Comparison_Between_Representations_for_Evolving_Images }, publisher={Springer International Publishing}, keywords={Genetic programming (GP), Image representation, Locality}, author={Re, Alessandro and Castelli, Mauro and Vanneschi, Leonardo}, pages={163-185}, language={English} }
Used References
1. Draves, S.: The electric sheep screen-saver: a case study in aesthetic evolution. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 458–467. Springer, Heidelberg (2005) http://dx.doi.org/10.1007/978-3-540-32003-6_46
2. Hart, D.A.: Toward greater artistic control for interactive evolution of images and animation. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 527–536. Springer, Heidelberg (2007)
3. Romero, J.J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Heidelberg (2008)
4. World, L.: Aesthetic selection: the evolutionary art of Steven Rooke [about the cover]. Comput. Graph. Appl. 16(1), 4 (1996) http://dx.doi.org/10.1109/MCG.1996.481558
5. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002) http://dx.doi.org/10.1007/978-3-662-04726-2
6. Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)MATH
7. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011) http://dx.doi.org/10.1162/EVCO_a_00025
8. Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connect. Sci. 6(2–3), 325–354 (1994) http://dx.doi.org/10.1080/09540099408915729
9. Nguyen, A., Yosinski, J., Clune, J.: Innovation engines: automated creativity and improved stochastic optimization via deep learning. In: Proceedings of the Genetic and Evolutionary Computation Conference (2015)
10. Correia, J., Machado, P., Romero, J., Carballal, A.: Evolving figurative images using expression-based evolutionary art. In: Proceedings of the Fourth International Conference on Computational Creativity, p. 24 (2013)
11. Machado, P., Correia, J., Romero, J.: Expression-based evolution of faces. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 187–198. Springer, Heidelberg (2012) http://dx.doi.org/10.1007/978-3-642-29142-5_17
12. Martins, T., Correia, J., Costa, E., Machado, P.: Evotype: evolutionary type design. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 136–147. Springer, Heidelberg (2015)
13. Woolley, B.G., Stanley, K.O.: On the deleterious effects of a priori objectives on evolution and representation. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 957–964. ACM (2011)
14. Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality as a problem difficulty measure in genetic programming. Genet. Program Evolvable Mach. 12(4), 365–401 (2011) http://dx.doi.org/10.1007/s10710-011-9136-3
15. Galvan, E., Trujillo, L., McDermott, J., Kattan, A.: Locality in continuous fitness-valued cases and genetic programming difficulty. In: Schütze, O., Coello Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge Between Probability, Set Oriented Numerics, and Evolutionary Computation II. AISC, vol. 175, pp. 41–56. Springer, Heidelberg (2012) http://dx.doi.org/10.1007/978-3-642-31519-0_3
16. Stadler, P.F.: Fitness landscapes. In: Biological Evolution and Statistical Physics, pp. 183–204. Springer, Heidelberg (2002)
17. Rothlauf, F.: Design of representations and search operators. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1061–1083. Springer, Heidelberg (2015) http://dx.doi.org/10.1007/978-3-662-43505-2_53
18. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, D. (ed.) FOGA-2, pp. 93–108. Morgan Kaufmann, San Francisco (1993)
19. Horn, J., Goldberg, D.E.: Genetic algorithm difficulty and the modality of the fitness landscapes. In: Whitley, D., Vose, M. (eds.) FOGA-3, pp. 243–269. Morgan Kaufmann, San Francisco (1995)
20. Mitchell, M., Forrest, S., Holland, J.: The royal road for genetic algorithms: fitness landscapes and GA performance. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 245–254. MIT Press, Cambridge (1996)
21. Forrest, S., Mitchell, M.: What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation. Mach. Learn. 13, 285–319 (1993) http://dx.doi.org/10.1023/A%3A1022626114466
22. Chakraborty, U.K., Janikow, C.Z.: An analysis of gray versus binary encoding in genetic search. Inf. Sci. 156(3–4), 253–269 (2003) http://dx.doi.org/10.1016/S0020-0255(03)00178-6
23. Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland (2004)
24. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, B.: The role of syntactic and semantic locality of crossover in genetic programming. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 533–542. Springer, Heidelberg (2010)
25. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R., Phong, D.N.: On the roles of semantic locality of crossover in genetic programming. Inf. Sci. 235, 195–213 (2013). Data-based Control. Decision, Scheduling and Fault Diagnostics http://dx.doi.org/10.1016/j.ins.2013.02.008
26. den Heijer, E., Eiben, A.E.: Evolving pop art using scalable vector graphics. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 48–59. Springer, Heidelberg (2012) http://dx.doi.org/10.1007/978-3-642-29142-5_5
27. den Heijer, E., Eiben, A.E.: Evolving art with scalable vector graphics. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 427–434. ACM (2011)
28. Baker, E., Seltzer, M.: Evolving line drawings. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 91–100. Morgan Kaufmann Publishers (1994)
29. Unemi, T., Soda, M.: An IEC-based support system for font design. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 968–973. IEEE (2003)
30. Schmitz, M.: genoTyp, an experiment about genetic typography. In: Proceedings of Generative Art 2004 (2004)
31. Pagliarini, L., Parisi, D.: Face-it project. In: Proceedings of XV Italian Congress on Experimental Psychology, pp. 38–41 (1996)
32. Alsing, R.: Genetic programming: Evolution of Mona Lisa (2008). http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/
33. Sims, K.: Artificial evolution for computer graphics, vol. 25(4), pp. 319–328. ACM (1991)
34. Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series, pp. 3–37. Springer, Heidelberg (2008) http://dx.doi.org/10.1007/978-3-540-72877-1_1
35. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program Evolvable Mach. 8(2), 131–162 (2007) http://dx.doi.org/10.1007/s10710-007-9028-8
36. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011) http://dx.doi.org/10.1162/EVCO_a_00030
37. McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005) http://dx.doi.org/10.1007/978-3-540-32003-6_43
38. Jiarathanakul, P.: Ray marching distance fields in real-time on webgl. Technical report, Citeseer
39. Quilez, I.: Modeling with distance functions (2008). http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
40. Greenfield, G.R., et al.: Mathematical building blocks for evolving expressions. In: Bridges: Mathematical Connections in Art, Music, and Science, pp. 61–70. Tarquin Publications (2000)
41. Ventrella, J.J.: Evolving the mandelbrot set to imitate figurative art. In: Hingston, P.F., Barone, L.C., Michalewicz, Z. (eds.) Design by Evolution: Advances in Evolutionary Design. Natural Computing Series, pp. 145–167. Springer, Heidelberg (2008) http://dx.doi.org/10.1007/978-3-540-74111-4_9
42. Lutton, E., Cayla, E., Chapuis, J.: ArtiE−fract: the artist’s viewpoint. In: Cagnoni, S., et al. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 510–521. Springer, Heidelberg (2003) http://dx.doi.org/10.1007/3-540-36605-9_47
43. Schmidhuber, J.: Low-complexity art. Leonardo, 97–103 (1997). JSTOR
44. Machado, P., Cardoso, A.: All the truth about NEvAr. Appl. Intell. 16(2), 101–118 (2002) http://dx.doi.org/10.1023/A%3A1013662402341
45. Di Gesu, V., Starovoitov, V.: Distance-based functions for image comparison. Pattern Recogn. Lett. 20(2), 207–214 (1999) http://dx.doi.org/10.1016/S0167-8655(98)00115-9
46. D’Agostino, R.B.: An omnibus test of normality for moderate and large size samples. Biometrika 58(2), 341–348 (1971) http://dx.doi.org/10.1093/biomet/58.2.341
47. D’Agostino, R.B., Pearson, E.S.: Tests for departure from normality. empirical results for the distributions of b2 and b1. Biometrika 60(3), 613–622 (1973)MathSciNetMATH
Links
Full Text