A test of genetic algorithms in relevance feedback: Unterschied zwischen den Versionen

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „ == Referenz == C. López-Pujalte, V. Guerrero, F. Moya: A test of genetic algorithms in relevance feedback. Information Processing & Management, 38 (2002…“)
 
(kein Unterschied)

Aktuelle Version vom 26. Juni 2016, 13:21 Uhr

Referenz

C. López-Pujalte, V. Guerrero, F. Moya: A test of genetic algorithms in relevance feedback. Information Processing & Management, 38 (2002), pp. 793–805

DOI

http://dx.doi.org/10.1016/S0306-4573(01)00061-9

Abstract

There have been recent applications of genetic algorithms to information retrieval, mostly with respect to relevance feedback. Nevertheless, they are yet to be evaluated in a way that allows them to be compared with each other and with other relevance feedback techniques. We here implement the different genetic algorithms that have been applied in the literature together with some of our own variations, and evaluate them using the residual collection method described by Salton in 1990 for the evaluation of relevance feedback techniques. We compare the results with those of the Ide dec-hi method, which is one of the traditional methods that yields the best results.

Extended Abstract

Bibtex

@article{LópezPujalte2002793,
title = "A test of genetic algorithms in relevance feedback ",
journal = "Information Processing & Management ",
volume = "38",
number = "6",
pages = "793 - 805",
year = "2002",
note = "",
issn = "0306-4573",
doi = "http://dx.doi.org/10.1016/S0306-4573(01)00061-9",
url = "http://www.sciencedirect.com/science/article/pii/S0306457301000619 http://de.evo-art.org/index.php?title=A_test_of_genetic_algorithms_in_relevance_feedback",
author = "Cristina López-Pujalte and Vicente P Guerrero Bote and Félix de Moya Anegón",
keywords = "Genetic algorithms",
keywords = "Relevance feedback",
keywords = "Information retrieval",
keywords = "Test collections "
}

Used References

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. In J. J. Grefenstette (Ed.), Proceedings of the second international conference on genetic algorithms and their applications (pp. 14–21). Hillsdale, MA: Erlbaum (Lawrence).

Frakes, W. B., & Baeza-Yates, R. (1992). In W. B. Frakes, & R. Baeza-Yates (Eds.), Information retrieval: Data structures & algorithms. Englewood Cliffs, NJ: Prentice-Hall.

Belew, R. K. (1989). Adaptive information retrieval. In Proceedings of the Association for Computing Machinery Special Interest Group on Information Retrieval (ACM/SIGIR) 12th annual international conference on research and development in information retrieval, June 25–28, Cambridge, MA (pp. 11–20). New York, NY: ACM (ISBN 0-89791-321-3).

Chang, C.-H., & Hsu, C.-C. (1999). The design of an information system for hypertext retrieval and automatic discovery on WWW. PhD Thesis, Department of CSIE, National Taiwan University.

Chen, H. (1995). Machine learning for information retrieval: neural networks, symbolic learning, and genetic algorithms. Journal of the American Society for Information Science, 46(3), 194–216.

Chen, H., Chung, Y., & Ramsey, M. (1998). A smart itsy bitsy spider for the web. Journal of the American Society for Information Science, 49(7), 604–618.

Chen, H., & Iyer, A. (1998). A machine learning approach to inductive query by examples: an experiment using relevance feedback, ID3, genetic algorithms, and simulated annealing. Journal of the American Society for Information Science, 49(8), 693–705.

Cord�on, O., Moya, F., & Zarco, M. C. (1999). Breve estudio sobre la aplicaci�on de los algoritmos gen�eticos a la recuperaci�on de la informaci�on. In IV Congreso ISKO (Granada) (pp. 179–186).

Davis, L. (Ed.). (1991). Handbook of genetic algorithms. New York: Van Nostrand Reinhold.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. PhD Thesis, Universidad de Michigan.

De Jong, K. A., & Spears, W. M. (1992). A formal analysis of the role of multi-point crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence, 5(1), 1–26.

Eshelman, L. J., Caruana, A., & Schaffer, J. D. (1989). Biases in the crossover landscape. In J. D. Schaffer (Ed.), Proceeding of the third international conference on genetic algorithms (pp. 86–91). San Mateo, CA: Morgan Kaufmann.

Glover, D. E. (1987). Solving a complex keyboard configuration problem through a generalized adaptive search. In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 12–31). San Mateo, CA: Morgan Kaufmann.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison- Wesley.

Gordon, M. D. (1988a). Probabilistic and genetic algorithms for document retrieval. Communications of ACM, 31(10), 1208–1218.

Gordon, M. D. (1988b). The necessity for adaptation in modified Boolean document retrieval systems. Information Processing and Management, 24(3), 339–347.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, SMC-16(1), 122–128.

Grefenstette, J. J. (1987). Incorporating problem specific knowledge into genetic algorithms. In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 42–60). Los Altos, CA: Morgan Kaufmann.

Guerrero Bote, V. P., Moya Aneg�on, F., & Herrero Solana, V. (2002). Document organization using Kohonen’s algorithm. Information Processing and Management, 38, 79–89.

Herrera, F., Lozano, M., & Verdegay, J. L. (1995). Algoritmos gen�eticos: fundamentos, extensiones y aplicaciones. Arbor, CLII, 597, 9–40.

Herrera, F., Lozano, M., & Verdegay, J. L. (1998). Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artificial Intelligence Review, 12, 265–319.

Hilliard, M. R., & Liepins, G. E. (1987). A classifier-based system for discovering scheduling heuristics. In Genetic algorithms and their applications: Proceedings of the second international conference on genetic algorithms (pp. 231–235).

Holland, J. H. (1992). Adaptation in natural and artificial systems (2nd ed.). Cambridge, MA: MIT Press.

Horng, J.-T., & Yeh, C.-C. (2000). Applying genetic algorithms to query optimization in document retrieval. Information Processing and Management, 36, 737–759.

Ide, E. (1971). New experiments in relevance feedback. In G. Salton (Ed.), The SMART retrieval system (pp. 337–354). Englewood Cliffs, NJ: Prentice-Hall.

Kucera, H., & Francis, N. (1967). Computational analysis of present-day American English. Providence, RD: Brown University Press.

Kwok, K. L. (1989). A neural network for probabilistic information retrieval. In N. J. Belkin, & C. J. Van Rijsbergen (Eds.), Proceedings of the twelfth annual international ACM/SIGIR conference on research and development in information retrieval, Cambridge, MA (pp. 21–30). New York: ACM Press.

Kwok, K. L. (1990). Application of neuronal network to information retrieval. In International Joint Conference on Neuronal Networks, Washington.

Kwok, K. L. (1997). Comparing representations in Chinese information retrieval (pp. 34–41). Philadelphia, PA, USA: ACM/SIGIR.

L�opez-Pujalte, C. (2000). Algoritmos gen�eticos aplicados a la retroalimentaci�on por relevancia. PhD Thesis, Facultad de Biblioteconom�ıa y Documentaci�on, Universidad de Granada.

Mart�ın-Bautista, M. J. (2000). Modelos de computaci�on flexible para la recuperaci�on de informaci�on. PhD Thesis, E.T.S. de Ingenier�ıa de Inform�atica, Universidad de Granada.

Mart�ın-Bautista, M. J., Vila, M. A., & Larsen, H. L. (1999). A fuzzy genetic algorithm approach to an adaptive information retrieval agent. Journal of the American Society for Information Science, 50(9), 760–771.

Michalewicz, Z. (1995). Genetic algorithms + data structures = evolution programs. Berlin: Springer.

Noreault, T., McGill, M., & Koll, M. B. (1981). A performance evaluation of similarity measures, document term weighting schemes and representation in a Boolean environment. Information retrieval research. London: Butterworths.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.

Poulter, A., Morris, A., & Dow, J. (1994). LIS professionals as knowledge engineers. Annual Review of Information Science and Technology, 29, 305–350.

Radcliffe, N. J. (1991). Formal analysis and random respectful recombination. In Proceedings of the fourth international conference on genetic algorithms (pp. 222–229). San Mateo, CA: Morgan Kaufmann.

Raghavan, V. V., & Agarwal, B. (1987). Optimal determination of user-oriented clusters: an application for the reproductive plan. In Genetic algorithms and their applications: Proceedings of the second international conference on genetic algorithms and their applications (pp. 241–246).

Robertson, A. M., & Willett, P. (1996). An upperbound to the performance of ranked-output searching: optimal weighting of query terms using a genetic algorithm. Journal of Documentation, 52(4), 405–420.

Robertson, G. (1987). Parallel implementation of genetic algorithms in classification systems. In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 129–140). San Mateo, CA: Morgan Kaufmann.

Salton, G., & Buckley, C. (1990). Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science, 41(4), 288–297.

Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. New York: McGraw-Hill. Wright, A. (1991). Genetic algorithms for real parameter optimization. In G. J. E. Rawlin (Ed.), Foundations of genetic algorithms 1 (pp. 205–218). San Mateo, CA: Morgan Kaufmann.

Yang, J. J., & Korfhage, R. (1994). Query modification using genetic algorithms in vector space models. International Journal of Expert Systems, 7(2), 165–191.

Links

Full Text

internal file


Sonstige Links