Immersion in Mathematics: Unterschied zwischen den Versionen

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „ == Reference == Judy Holdener: Immersion in Mathematics. In: Bridges 2016, Pages 25–32. == DOI == == Abstract == In this article I describe the …“)
(kein Unterschied)

Version vom 26. Dezember 2016, 19:18 Uhr


Reference

Judy Holdener: Immersion in Mathematics. In: Bridges 2016, Pages 25–32.

DOI

Abstract

In this article I describe the meaning of my digital work of mathematical art titled “Immersion.”

Extended Abstract

Bibtex

@inproceedings{bridges2016:25,

 author      = {Judy Holdener},
 title       = {Immersion in Mathematics},
 pages       = {25--32},
 booktitle   = {Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture},
 year        = {2016},
 editor      = {Eve Torrence, Bruce Torrence, Carlo S\'equin, Douglas McKenna, Krist\'of Fenyvesi and Reza Sarhangi},
 isbn        = {978-1-938664-19-9},
 issn        = {1099-6702},
 publisher   = {Tessellations Publishing},
 address     = {Phoenix, Arizona},
 url         = {http://de.evo-art.org/index.php?title=Immersion_in_Mathematics},
 note        = {Available online at \url{http://archive.bridgesmathart.org/2016/bridges2016-25.html}}

}


Used References

[1] H. Abelson and A.A. diSessa, Turtle Geometry, MIT Press Series in Artificial Intelligence, (1981), MIT Press.

[2] W. Boy, “Ueberdie Curvatura integra und die Topologie geschlossener Flaechen.” Math. Annalen, 57 (1903), pp. 151-184.

[3] J. Holdener and M. Snipes, “Sources of Flow as Sources of Symmetry: Divergence Patterns of Sinusoidal Vector Fields,” Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, (2014), Tessellations Publishing, pp. 409–412, http://archive.bridgesmathart.org/ 2014/bridges2014-409.pdf (as of Jan. 4, 2015).

[4] L. Kennard, M. Zaremsky, and J. Holdener, “Generalized Thue-Morse sequences and the von Koch Curve,” International Journal of Pure and Applied Mathematics, 37(3), (2008).

[5] J. Ma and J. Holdener, “When Thue-Morse meets Koch,” Fractals: Complex Geometry, Patterns, and Scaling in Nature and Society, 13 (2005), pp. 191–206.

Links

Full Text

http://archive.bridgesmathart.org/2016/bridges2016-25.pdf

intern file

Sonstige Links

http://archive.bridgesmathart.org/2016/bridges2016-25.html