Tiling with Regular Polygons and Rhombs: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „ == Reference == Kevin Jardine: Imperfect Congruence: Tiling with Regular Polygons and Rhombs. In: Bridges 2013. Pages 439–442 == DOI == == Abstr…“) |
(kein Unterschied)
|
Aktuelle Version vom 28. Januar 2015, 17:05 Uhr
Inhaltsverzeichnis
Reference
Kevin Jardine: Imperfect Congruence: Tiling with Regular Polygons and Rhombs. In: Bridges 2013. Pages 439–442
DOI
Abstract
Edge-to-edge plane tilings of regular polygons can include only squares, triangles, hexagons, octagons, and dodecagons. The possibilities become far larger, striking and beautiful if we add rhombs to the prototile set.
Extended Abstract
Bibtex
Used References
[1] Johannes Kepler. Translated by E. J. Aiton, Alistair Matheson Duncan, and Judith Veronica Field. The Harmony of the World. American Philosophical Society, 1997.
[2] Duncan M. Y. Sommerville.“Semi-regular Networks of the Plane in Absolute Geometry”, Transactions of the Royal Society of Edinburgh, 41, pp 725-747, 1906.
[3] Kevin Jardine. Imperfect Congruence website. http://gruze.org/tilings (as of March 5, 2013).
[4] Sampath Kannan and Danny Soroker. “Tiling polygons with parallelograms”, Discrete & Computational Geometry, Volume 7, Issue 1, pp 175-188, 1992.
[5] Richard Kenyon.“Tiling a polygon with parallelograms”, Algorithmica, Volume 9, Issue 4, pp 382-397, April 1993.
Links
Full Text
http://archive.bridgesmathart.org/2013/bridges2013-439.pdf