Mathematical Methods in Origami Design: Unterschied zwischen den Versionen

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „ == Reference == Robert J. Lang: Mathematical Methods in Origami Design. In: Bridges 2009. Pages 11–20 == DOI == == Abstract == The marriage of a…“)
 
(kein Unterschied)

Aktuelle Version vom 29. Januar 2015, 20:30 Uhr


Reference

Robert J. Lang: Mathematical Methods in Origami Design. In: Bridges 2009. Pages 11–20

DOI

Abstract

The marriage of art and mathematics has been widespread and productive, but almost nowhere more productive than in the world of origami. In this paper I will discuss how mathematical ideas led to the development of powerful tools for origami design and will present a step-by-step illustration of the design and realization of a representational origami figure using mathematical design algorithms. Along the way, I will discuss how these mathematical concepts have led to new levels of creative expression within this art.

Extended Abstract

Bibtex

Used References

[1] Robert J. Lang. Mathematical algorithms for origami design. Symmetry: Culture and Science, 5(2):115–152, 1994.

[2] Robert J. Lang. Origami Insects and their Kin. Dover Publications, 1995.

[3] Robert J. Lang. A computational algorithm for origami design. In 12th ACM Symposium on Computa- tional Geometry, pages 98–105, 1996.

[4] Robert J. Lang. The tree method of origami design. In Koryo Miura, editor, Origami Science and Art: Proceedings of the Second International Meeting of Origami Science and Scientific Origami, pages 73–82, Ohtsu, Japan, 1997.

[5] Robert J. Lang. Scorpion, opus 379, 2002. http://www.langorigami.com/art/gallery/gallery.php4?name=scorpion_varileg

[6] Robert J. Lang. Origami Design Secrets: Mathematical Methods for an Ancient Art. A K Peters, 2003.

[7] Robert J. Lang. Origami Insects II. Gallery Origami House, 2003.

[8] Robert J. Lang. TreeMaker, 2003. http://www.langorigami.com/treemaker.htm.

[9] Toshiyuki Meguro. Jitsuyou origami sekkeihou [practical methods of origami designs]. Origami Tan- teidan Shinbun, 2(7–14), 1991–1992.

[10] Toshiyuki Meguro. ‘Tobu Kuwagatamushi’-to Ryoikienbunshiho [‘Flying Stag Beetle’ and the circular area molecule method]. In Oru, pages 92–95. 1994.

[11] R. T. Rockafellar. Augmented Lagrangian multiplier functions and duality in nonconvex programming. SIAM Journal on Control, 12(2):268–285, 1974.

[12] Andre Tits. CFSQP. http://www.aemdesign.com.


Links

Full Text

http://archive.bridgesmathart.org/2009/bridges2009-11.pdf

intern file

Sonstige Links

http://archive.bridgesmathart.org/2009/bridges2009-11.html