The Brachistochrone Problem between Euclidean and Hyperbolic: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „ == Reference == Robert Smits: The Brachistochrone Problem between Euclidean and Hyperbolic. In: Bridges 2008. Pages 87–92 == DOI == == Abstract …“) |
(kein Unterschied)
|
Aktuelle Version vom 30. Januar 2015, 12:57 Uhr
Inhaltsverzeichnis
Reference
Robert Smits: The Brachistochrone Problem between Euclidean and Hyperbolic. In: Bridges 2008. Pages 87–92
DOI
Abstract
We investigate discrete models of the upper-half plane endowed with various conformal metrics, which in essence are intermediaries between the standard Euclidean and the hyperbolic ones. The brachistochrone problem is related to a metric associated to arithmetic sequences.
Extended Abstract
Bibtex
Used References
[1] P.-G. de Gennes, Simple Views on Condensed Matter. World Scientific Publishing Company, 1998.
[2] P. Dombrowski, The Brachistochrone Problem: a Problem of Elementary Differential Geometry, Geometry and topology of submanifolds, VIII pp. 148-167 World Scientific Publishing Co. 1996
[3] R. Ferreol and J. Mandonnet, Courbe Brachistochrone at http://www.mathcurve.com/
[4] J. Hawkins, On Intelligence, Holt Paperbacks 2005
[5] R. Smits, Square Decompositions with Hyperbolic Consequences in Art, Chemical Physics and Mathematics, Bridges Proceedings 2003
Links
Full Text
http://archive.bridgesmathart.org/2008/bridges2008-87.pdf