Dimension Reduction for Object Ranking
Inhaltsverzeichnis
Reference
Toshihiro Kamishima, Shotaro Akaho: Dimension Reduction for Object Ranking. In: Fürnkranz, J. and Hüllermeier, E.: Preference Learning, 2011, 203-215.
DOI
http://dx.doi.org/10.1007/978-3-642-14125-6_10
Abstract
Ordered lists of objects are widely used as representational forms. Such ordered objects include Web search results and bestseller lists. Techniques for processing such ordinal data are being developed, particularly methods for an object ranking task: i.e., learning functions used to sort objects from sample orders. In this article, we propose two dimension reduction methods specifically designed to improve prediction performance in an object ranking task.
Extended Abstract
Bibtex
@incollection{ year={2011}, isbn={978-3-642-14124-9}, booktitle={Preference Learning}, editor={Fürnkranz, Johannes and Hüllermeier, Eyke}, doi={10.1007/978-3-642-14125-6_10}, title={Dimension Reduction for Object Ranking}, url={http://dx.doi.org/10.1007/978-3-642-14125-6_10, http://de.evo-art.org/index.php?title=Dimension_Reduction_for_Object_Ranking }, publisher={Springer Berlin Heidelberg}, author={Kamishima, Toshihiro and Akaho, Shotaro}, pages={203-215}, language={English} }
Used References
1. T. Kamishima, H. Kazawa, S. Akaho, A survey and empirical comparison of object ranking methods, in Preference Learning, ed. by J. Fürnkranz, E. Hüllermeier (Springer, 2010)
2. T. Kamishima, H. Kazawa, S. Akaho, Supervised ordering – an empirical survey, in Proceedings of The 5th IEEE International Conference on Data Mining (2005) pp. 673–676
3. O. Luaces, G.F. Bayón, J.R. Quevedo, J. Díez, J.J. del Coz, A. Bahamonde, Analyzing sensory data using non-linear preference learning with feature subset selection, in Proceedings of the 15th European Conference on Machine Learning (2004), pp. 286–297 [LNAI 3201]
4. W.W. Cohen, R.E. Schapire, Y. Singer, Learning to order things. J. Artif. Intell. Res. 10, 243–270 (1999)
5. R. Herbrich, T. Graepel, P. Bollmann-Sdorra, K. Obermayer, Learning preference relations for information retrieval, in ICML-98 Workshop: Text Categorization and Machine Learning (1998), pp. 80–84
6. T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of The 8th International Conference on Knowledge Discovery and Data Mining (2002), pp. 133–142
7. F. Radlinski, T. Joachims, Query chains: Learning to rank from implicit feedback, in Proceedings of The 11th International Conference on Knowledge Discovery and Data Mining (2005), pp. 239–248
8. H. Yu, SVM selective sampling for ranking with application to data retrieval, in Proceedings of The 11th International Conference on Knowledge Discovery and Data Mining (2005), pp. 354–363
9. Y. Freund, R. Iyer, R.E. Schapire, Y. Singer, An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)
10. A. Bahamonde, G.F. Bayón, J.D.J.R. Quevedo, O. Luaces, J.J. del Coz, J. Alonso, F. Goyache, Feature subset selection for learning preferences: A case study, in Proceedings of The 21st International Conference on Machine Learning (2004), pp. 49–56
11. D.J. Slotta, J.P. Vergara, N. Ramakrishnan, L.S. Heath, Algorithms for feature selection in rank-order spaces. Technical Report TR-05-08, Computer Science, Virginia Tech. (2005)
12. M. Dettling, P. Bühlmann, Supervised clustering of genes. Genome Biol. 3(12) (2002). http://dx.doi.org/10.1186/gb-2002-3-12-research0069 http://www.genomebiology.com/2002/3/12/research/0069
13. L. Deng, J. Pei, J. Ma, D.L. Lee, A rank sum test method for informative gene discovery, in Proceedings of The 10th International Conference on Knowledge Discovery and Data Mining (2004), pp. 410–419
14. T. Kamishima, S. Akaho, Filling-in missing objects in orders, in Proceedings of The 4th IEEE International Conference on Data Mining (2004), pp. 423–426
15. P. Diaconis, A generalization of spectral analysis with application to ranked data. Ann. Stat. 17(3), 949–979 (1989) http://dx.doi.org/10.1214/aos/1176347251
16. H. Kazawa, T. Hirao, E. Maeda, Order SVM: a kernel method for order learning based on generalized order statistics. Syst. Comput. Jpn. 36(1), 35–43 (2005) http://dx.doi.org/10.1002/scj.10630
Links
Full Text
http://www.kamishima.net/archive/2009-b-pl1.pdf