Creativity in Conceptual Spaces
Inhaltsverzeichnis
Reference
Antonio Chella, Salvatore Gaglio, Gianluigi Oliveri, Agnese Augello and Giovanni Pilato: Creativity in Conceptual Spaces. In: Computational Creativity 2014 ICCC 2014, 306-314.
DOI
Abstract
The main aim of this paper is contributing to what in the last few years has been known as computational creativity. This will be done by showing the relevance of a particular math- ematical representation of G ̈ardenfors’s conceptual spaces to the problem of modelling a phenomenon which plays a cen- tral role in producing novel and fruitful representations of per- ceptual patterns: analogy.
Extended Abstract
Bibtex
@inproceedings{ author = {Antonio Chella, Salvatore Gaglio, Gianluigi Oliveri, Agnese Augello and Giovanni Pilato}, title = {Creativity in Conceptual Spaces}, booktitle = {Proceedings of the Sixth International Conference on Computational Creativity}, series = {ICCC2014}, year = {2014}, month = {Jun}, location = {Ljubljana, Slovenia}, pages = {306-314}, url = {http://computationalcreativity.net/iccc2014/wp-content/uploads/2014/06//14.3_Chella.pdf, http://de.evo-art.org/index.php?title=Creativity_in_Conceptual_Spaces }, publisher = {International Association for Computational Creativity}, keywords = {computational, creativity}, }
Used References
Augello, A.; Gaglio, S.; Oliveri, G.; and Pilato, G. 2013a. Acting on conceptual spaces in cognitive agents. In Lieto and Cruciani (2013), 25–32.
Augello, A.; Gaglio, S.; Oliveri, G.; and Pilato, G. 2013b. An algebra for the manipulation of conceptual spaces in cog- nitive agents. Biologically Inspired Cognitive Architectures 6(0):23 – 29. {BICA} 2013: Papers from the Fourth Annual Meeting of the {BICA} Society.
Biederman, I. 1987. Recognition-by-components: A the- ory of human image understanding. Psychological Review 94:115–147.
Cardoso, A.; Veale, T.; and Wiggins, G. A. 2009. Con- verging on the divergent: The history (and future) of the in- ternational joint workshops in computational creativity. AI Magazine 30(3):15–22.
Chella, A.; Frixione, M.; and Gaglio, S. 1997. A cogni- tive architecture for artificial vision. Artificial Intelligence 89(1?2):73 – 111.
Chella, A. 2013. Towards a cognitive architecture for music perception. In Lieto and Cruciani (2013), 56–67.
Colton, S., and Wiggins, G. A. 2012. Computational cre- ativity: The final frontier? In Raedt, L. D.; Bessi`ere, C.; Dubois, D.; Doherty, P.; Frasconi, P.; Heintz, F.; and Lu- cas, P. J. F., eds., ECAI, volume 242 of Frontiers in Artificial Intelligence and Applications, 21–26. IOS Press.
De Paola, A.; Gaglio, S.; Re, G. L.; and Ortolani, M. 2009. An ambient intelligence architecture for extracting knowl- edge from distributed sensors. In Proceedings of the 2nd International Conference on Interaction Sciences: Informa- tion Technology, Culture and Human, ICIS ’09, 104–109. New York, NY, USA: ACM.
French, R. M. 1995. The Subtlety of Sameness: A Theory and Computer Model of Analogy-making. Cambridge, MA, USA: MIT Press.
Gaglio, S.; Puliafito, P. P.; Paolucci, M.; and Perotto, P. P. 1988. Some problems on uncertain knowledge acquisition for rule based systems. Decision Support Systems 4(3):307– 312.
G ̈ardenfors, P. 1988. Semantics, conceptual spaces and the dimensions of music. In Rantala, V.; Rowell, L.; and Tarasti, E., eds., Essays on the Philosophy of Music. Helsinki: Philo- sophical Society of Finland. 9–27.
G ̈ardenfors, P. 2000. Conceptual spaces - the geometry of thought. MIT Press.
G ̈ardenfors, P. 2004. Conceptual spaces as a framework for knowledge representations. Mind and Matter 2(2):9–27.
Grace, K.; Saunders, R.; and Gero, J. 2008. A computational model for constructing novel associations. In Gerv ́as, P.; P ́erez; and Veale, T., eds., Proceedings of the International Joint Workshop on Computational Creativity 2008, 91–100. Madrid, Spain: Departamento de Ingeniera del Software e Inteligencia Artificial Universidad Complutense de Madrid.
Halford, G.; Wilson, W.; Guo, J.; Gayler, R.; Wiles, J.; and Stewart, J. 1994. Connectionist implications for processing capacity limitations in analogies. Advances in connection- ist and neural computation theory, Analogical Connections 2:363–415.
Harnad, S. 1990. The symbol grounding problem. Physica D 42:335–346.
Hofstadter, D. R., and Mitchell, M. 1994. The copycat project: A model of mental fluidity and analogy-making. In Holyoak, K. J., and Barnden, J. A., eds., Advances in Con- nectionist and Neural Computation Theory. Norwood, NJ: Ablex Publishing Corporation.
Holyoak, K., and Thagard, P. 1989. Analogical mapping by constraint satisfaction. Cognitive Science 13:295–355.
Holyoak, K. J.; Gentner, D.; Kokinov, B.; and Gentner, D. 2001. Introduction: The place of analogy in cognition. The Analogical Mind: Perspectives from cognitive science. Cambridge, MA: MIT press.
Hummel, J., and Holyoak, K. 1996. Lisa: a computational model of analogical inference and schema induction. In Pro- ceedings of the Eighteenth Annual Conference of the Cogni- tive Science Society.
Jung, H.; Menon, A.; and Arkin, R. C. 2011. A concep- tual space architecture for widely heterogeneous robotic sys- tems. In Samsonovich, A. V., and Johannsdottir, K. R., eds., BICA, volume 233 of Frontiers in Artificial Intelligence and Applications, 158–167. IOS Press.
Kazjon Grace, J. G., and Saunders, R. 2012. Represen- tational affordances and creativity in association-based sys- tems. In Maher, M. L.; Hammond, K.; Pease, A.; P ́erez, R.; Ventura, D.; and Wiggins, G., eds., Proceedings of the Third International Conference on Computational Creativ- ity, 195–202.
Kokinov, B., and French, R. M. 2006. Computational Mod- els of Analogy-making, volume 1 of Encyclopedia of Cogni- tive Science. John Wiley and Sons, Ltd. 113–118.
Krumnack, U.; Khnberger, Kai-Uwe, S. A.; and Besold, T. R. 2013. Analogies and analogical reasoning in invention. In Carayannis, E., ed., Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship. Springer New York. 56– 62.
Lieto, A., and Cruciani, M., eds. 2013. Proceedings of the First International Workshop on Artificial Intelligence and Cognition (AIC 2013) An official workshop of the 13th International Conference of the Italian Association for Ar- tificial Intelligence (AI*IA 2013), Torino, Italy, December 3, 2013, volume 1100 of CEUR Workshop Proceedings. CEUR-WS.org.
Marr, D. 1982. Vision. New York: W.H. Freeman and Co. Oliveri, G. 1997. Mathematics. a science of patterns? Syn- these 112(3):379–402.
Oliveri, G. 2007. A Realist Philosophy of Mathematics. Texts in Philosophy. Kings College Publications.
Oliveri, G. 2012. Object, structure, and form. Logique et Analyse 219:401–442.
Oxenham, A. 2013. The perception of musical tones. In Deutsch, D., ed., The Psychology of Music. Amsterdam, The Netherlands: Academic Press, third edition. chapter 1, 1–33.
R ́ev ́esz, G. 1954. Introduction to the psychology of music. University of Oklahoma Press.
Scholkopf, B., and Smola, A. J. 2001. Learning with Ker- nels: Support Vector Machines, Regularization, Optimiza- tion, and Beyond. Cambridge, MA, USA: MIT Press.
Shepard, R. N. 1982. Geometrical approximations to the structure of musical pitch. Psychological Review 89(4):305– 333.
Tanguiane, A. 1993. Artificial Perception and Music Recog- nition. Number 746 in Lecture Notes in Artificial Intelli- gence. Berlin Heidelberg: Springer-Verlag.
Wilson, W. H.; Halford, G. S.; Gray, B.; and Phillips, S. 2001. The star-2 model for mapping hierarchically structured analogs. In World Bank, Human Development 4 (AFTH4). Washington DC, 125–159. MIT Press.
Links
Full Text
http://computationalcreativity.net/iccc2014/wp-content/uploads/2014/06//14.3_Chella.pdf