Evolutionary Learning and Stochastic Process Algebra
Inhaltsverzeichnis
Reference
Brian J. Ross: Evolutionary Learning and Stochastic Process Algebra. 1st International Workshop on Induction of Process Models, ICML 2007, Corvallis, OR, June 2007.
DOI
Abstract
This extended abstract discusses research us- ing genetic programming to evolve stochastic processes, as modelled in the stochastic pi- calculus.
Extended Abstract
Bibtex
Used References
Blossey, R., Cardelli, L., & Phillips, A. (2006). A Com- positional Approach to the Stochastic Dynamics of Gene Networks. Trans. in Comp. Sys. Bio (TCSB), 3939, 99–122.
Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice–Hall.
Kitagawa, J., & Iba, H. (2003). Identifying Metabolic Pathways and Gene Regulation Networks with Evo- lutionary Algorithms. In G. Fogel and D. Corne (Eds.), Evolutionary computation in bioinformatics, 255–278. Morgan Kaufmann.
Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., & Lanza, G. (2003). Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers.
Milner, R. (1989). Communication and Concurrency. Prentice Hall.
Milner, R. (1999). Communicating and Mobile Sys- tems: the Pi-calculus. Cambridge University Press.
Phillips, A. (2007). The stochastic pi machine (spim). URL: http://research.microsoft.com/aphillip/spim/. Last accessed March 1, 2007.
Phillips, A., & Cardelli, L. (2005). A Correct Abstract Machine for the Stochastic Pi-calculus. Proc. Bio- concur’04. London, UK.
Phillips, A., Cardelli, L., & Castagna, G. (2006). A Graphical Representation for Biological Processes in the Stochastic pi-calculus. Trans. in Comp. Sys. Bio (TCSB), 4230, 123–152.
Priami, C. (1995). Stochastic pi-Calculus. The Com- puter Journal, 38, 579–589.
Priami, C., Regev, A., Shapiro, E., & Silverman, W. (2001). Application of a stochastic name-passing calculus to representation and simulation of molec- ular processes. Information Processing Letters, 80, 25–31.
Ross, B. (1998a). Pairwise Sequence Comparison and the Genetic Programming of Iterative Concurrent Programs. Proc. Genetic Programming 1998 (pp. 338–343). Morgan Kaufmann.
Ross, B. (1998b). The Evolution of Concurrent Pro- grams. Applied Intelligence, 8, 21–32.
Ross, B. (2001). Logic-based Genetic Programming with Definite Clause Translation Grammars. New Generation Computing, 19, 313–337.
Ross, B. (2007). Using Genetic Programming to Syn- thesize Monotonic Stochastic Processes. Proceedings CI-2007. Banff, AB, Canada.
Speith, C., Streichert, F., Speer, N., & Zell, A. (2004). Iteratively inferring gene regulatory networks with virtual knockout experiments. Proc. 2nd European Workshop on Evolutionary Bioinformatics (pp. 102– 112). Springer. LNCS 3005.
Links
Full Text
http://www.cosc.brocku.ca/~bross/research/icml07ws.pdf