Point Symmetry Patterns on a Regular Hexagonal Tessellation

Aus de_evolutionary_art_org
Version vom 29. Januar 2015, 12:43 Uhr von Gbachelier (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ == Reference == David A. Reimann: Point Symmetry Patterns on a Regular Hexagonal Tessellation. In: Bridges 2012. Pages 365–368 == DOI == == Abst…“)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Reference

David A. Reimann: Point Symmetry Patterns on a Regular Hexagonal Tessellation. In: Bridges 2012. Pages 365–368

DOI

Abstract

An investigation of point symmetry patterns on the regular hexagonal tessellation is presented. This tessellation has three point symmetry groups. However, the restriction to the hexagonal tessellation causes some symmetry subgroups to be repeated in ways that are geometrically unique and others that are geometrically equivalent, resulting in a total of 14 geometrically distinct symmetry groups. Each symmetry group requires a particular set of motif symmetries to allow its construction. Examples of symmetric patterns are shown for several simple motif families.

Extended Abstract

Bibtex

Used References

[1] J.H. Conway, H. Burgiel, and C. Goodman-Strauss. The Symmetries of Things. AK Peters Wellesley, MA, 2008.

[2] J.A. Gallian. Contemporary Abstract Algebra. Brooks/Cole, 2009.

[3] David A. Reimann. Patterns from Archimedean tilings using generalized Truchet tiles decorated with simple B ́ezier curves. Bridges P ́ecs: Mathematics, Music, Art, Culture, George W. Hart and Reza Sarhangi, editors, pages 427–430, P ́ecs, Hungary, 24–28 July 2010.


Links

Full Text

http://archive.bridgesmathart.org/2012/bridges2012-365.pdf

intern file

Sonstige Links

http://archive.bridgesmathart.org/2012/bridges2012-365.html