Imagining Negative-Dimensional Space

Aus de_evolutionary_art_org
Version vom 29. Januar 2015, 12:45 Uhr von Gbachelier (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ == Reference == Luke Wolcott and Elizabeth McTernan: Imagining Negative-Dimensional Space. In: Bridges 2012. Pages 637–642 == DOI == == Abstract…“)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Reference

Luke Wolcott and Elizabeth McTernan: Imagining Negative-Dimensional Space. In: Bridges 2012. Pages 637–642

DOI

Abstract

The goal of this workshop is to induce the experience of contemplating negative-dimensional space. The authors are developing a performance art piece about negative-dimensional space, to be performed in Berlin in 2013. Workshop participants will preview and test out various thought experiments, movement-based lessons, and intuition-explorations, all aimed at an experience of negative dimensions. The workshop, accessible to all, will also serve as a demonstration of the performance/lecture genre of performance art.

Extended Abstract

Bibtex

Used References

[1] Jamie Allen, Rachel Clarke, Areti Galani, and Kamila Wajda. 2011. “Creative ecologies in action: technology and the workshop-as-artwork” in Proceedings of the 8th ACM conference on Creativity and cognition (C&C '11). ACM, New York, NY, USA, 2011. p. 309-310.

[2] J.F. Adams, Stable Homotopy and Generalised Homology, The University of Chicago Press. 1974.

[3] N Bourriaud, Esthétique relationnelle, Les Presse Du Reel, Franc, 1998. p.113.

[4] W. Byers, How Mathematicians Think, Princeton Univ. Press, 2010.

[5] A.D. Elmendorf, I. Kriz, M.A. Mandell, and J.P. May, Modern Foundations for Stable Homotopy Theory. Handbook of algebraic topology, 213–253, North-Holland, Amsterdam, 1995.

[6] H. M. Enzensberger, Drawbridge Up: Mathematics – A Cultural Anathema, A. K. Peters, 2001.

[7] J. Hadamard, The Psychology of Invention in the Mathematical Field, Dover, 1954.

[8] G. Lakoff and R. Nuñez, Where Mathematics Comes From, Basic Books, 2001.

[9] J.M. Lee, Introduction to Topological Manifolds, Springer GTM, 2010.

[10] H.R. Margolis, Spectra and the Steenrod Algebra, North-Holland, Amsterdam-New York, 1983.


Links

Full Text

http://archive.bridgesmathart.org/2012/bridges2012-637.pdf

intern file

Sonstige Links

http://archive.bridgesmathart.org/2012/bridges2012-637.html