From Sierpinski Triangle to Fractal Flowers

Aus de_evolutionary_art_org
Version vom 30. Januar 2015, 12:08 Uhr von Gbachelier (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ == Reference == Anne M. Burns: From Sierpinski Triangle to Fractal Flowers. In: Bridges 2008. Pages 117–122 == DOI == == Abstract == We describe…“)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Reference

Anne M. Burns: From Sierpinski Triangle to Fractal Flowers. In: Bridges 2008. Pages 117–122

DOI

Abstract

We describe an iterated function system consisting of transformations defined by a pair of complex parameters. Each of the transformations maps the unit circle into itself. For one assignment of the parameters the limit set is the famous Sierpinski Triangle. By “continuously” varying the parameters the limit set appears to erode into various shapes, some suggesting a dried river bed and others suggesting fractal flowers.

Extended Abstract

Bibtex

Used References

[1] Michael F. Barnsley, Superfractals, Cambridge University Press, 2006

[2] Anne M. Burns, Evolution of Math into Art via Möbius Transformations, Math+Art=X Proceedings, Boulder, CO, 2005

[3] David Mumford, Caroline Series and David Wright, Indra’s Pearls, the Vision of Felix Klein. Cambridge University Press, 2002

[4] Tristan Needham, Visual Complex Analysis, Oxford University Press, 1997


Links

Full Text

http://archive.bridgesmathart.org/2008/bridges2008-117.pdf

intern file

Sonstige Links

http://archive.bridgesmathart.org/2008/bridges2008-117.html