Crossover improvement for the genetic algorithm in information retrieval
Inhaltsverzeichnis
Referenz
D. Vrajitoru: Crossover improvement for the genetic algorithm in information retrieval. Information Processing and Management, 34 (4) (1998), pp. 405–415
DOI
http://dx.doi.org/10.1016/S0306-4573(98)00015-6
Abstract
Genetic algorithms (GAs) search for good solutions to a problem by operations inspired from the natural selection of living beings. Among their many uses, we can count information retrieval (IR). In this field, the aim of the GA is to help an IR system to find, in a huge documents text collection, a good reply to a query expressed by the user. The analysis of phenomena seen during the implementation of a GA for IR has brought us to a new crossover operation. This article introduces this new operation and compares it with other learning methods.
Extended Abstract
Bibtex
@article{Vrajitoru1998405, title = "Crossover improvement for the genetic algorithm in information retrieval ", journal = "Information Processing & Management ", volume = "34", number = "4", pages = "405 - 415", year = "1998", note = "", issn = "0306-4573", doi = "http://dx.doi.org/10.1016/S0306-4573(98)00015-6", url = "http://www.sciencedirect.com/science/article/pii/S0306457398000156 http://de.evo-art.org/index.php?title=Crossover_improvement_for_the_genetic_algorithm_in_information_retrieval", author = "Dana Vrajitoru" }
Used References
Beasley, J. E. & Chu, P. C. (1995). A Genetic Algorithm for the Set Covering Problem. European Journal of Operational Research, 94, 392±404.
Blair, D. C. (1990). Language and Representation in Information Retrieval. Amsterdam: Elsevier. Brassard, G. & Bratley, P. (1994). Fundamentals of algorithmics. Prentice Hall.
Chen, H. (1995). Machine learning for information retrieval: Neural networks, symbolic learning, and genetic algorithms. Journal of the American Society for Information Science, 46(3), 194±216.
De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. (Doctoral dissertation, University of Michigan). Dissertation Abstracts International, 36(10), 5140B.
Dillon, M., & Desper, J. (1980). Automatic relevance feedback in Boolean retrieval systems. Journal of Documentation, 36, 197±208.
Efron, B. (1986). How biased is the apparent error rate of a prediction rule. Journal of the American Statistical Association, 81(394), 461±470.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley.
Gordon, M. (1988). Probabilistic and genetic algorithms for document retrieval. Communications of the ACM, 31(10), 1208±1218.
Gordon, M. (1991). User-based document clustering by redescribing subject descriptions with a genetic algorithm. Journal of the American Society For Information Science, 42(5), 311±322.
Holland, J. H. (1975). Adaptation in natural and arti®cial systems. Ann Arbor: Univ. of Michigan Press. Ide, E. (1971). New experiments in relevance feedback. In The Smart system Ð experiments in automatic document processing, (pp. 373±393). Englewood Clis, NJ: Prentice Hall Inc.
Kulikowski, A. C. & Weiss, M. S. (1991). Computer systems that learn. San Mateo, CA: Morgan Kaufmann.
Mitchell, M., Forrest, S. & Holland, J. H. (1991). The royal road for genetic algorithms: Fitness landscapes and GA performance. In Toward a practice of autonomous systems: proceeding of the ®rst european conference on arti®cial life. Cambridge (MA): The MIT Press.
Petry, F., Buckles, B., Prabhu, D. & Kraft, D. (1993). Fuzzy information retrieval using genetic algorithms and relevance feedback. In Proceeding of the ASIS annual meeting (pp. 122±125).
Raghavan, V. V. & Agarwal, B. (1987). Optimal determination of user-oriented clusters: An application for the reproductive plan. In Proceedings of the second conference on genetic algorithms and their applications, Hillsdale, NJ (pp. 241±246).
Salton, G., & Buckley, C. (1990). Improving performance by relevance feedback. Journal of the American Society for Information Science, 41(4), 288±297.
Salton, G., Fox, E., & Wu, U. (1983). Extended Boolean information retrieval. Communications of the ACM, 26(12), 1022±1036.
Savoy, J.&Vrajitoru, D. (1996). Evaluation of learning schemes used in information retrieval. Technical Report CR-I-95-02, Universite de Neuchaà tel, Faculte de droit et des Sciences E conomiques.
Spears, W. (1995). Adapting crossover in evolutionary algorithms. Proceedings of the fourth annual conference on evolutionary programming.
Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of the third international conference on genetic algorithms, ed. J. D. Schaer. San Mateo (CA): Morgan Kaufmann Publishers.
Turtle, H. (1990). Inference networks for document retrieval. Doctoral Dissertation, Computer and Information Science Department, University of Massachusetts. Technical Report COINS Report 90±92, October 1990, ACM-TOIS.
Vrajitoru, D. (1997). Apprentissage en recherche d'informartions. Doctoral thesis, University of Neuchaà tel, Faculty of Science.
Yang, J.-J., Korfhage, R. R. & Rasmussen, E. (1992). Query improvement in information retrieval using genetic algorithms. In Proceedings of TREC'1, NIST, Gaitherburgs (MD) (pp. 31±58).
Links
Full Text
http://lcvmwww.epfl.ch/publications/data/articles/39/IPM98.ps.gz