Symmetry and Ornament

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche

Reference

Slavik Jablan: Symmetry and Ornament. In: Bridges 2000. Pages 1–12

DOI

Abstract

After the symmetry analysis of the Paleolithic and Neolithic ornamental art, it is given the evidence of different symmetry and anti symmetry groups that originated from it, and are preserved in the entire history of ornamental art as a kind of "ornamental archetypes".

Extended Abstract

Bibtex

Used References

[1] Akopyan I.D., Simmetriya i asimmetriya v poznanii, Akad. Nauk Armyanskoi SSR, Erevan, 1980.

[2] Belov N.V., Moorish Patterns of the Middle Ages and the Symmetry Groups, Soviet Physics- Crystallography 1 (1956), 482-483.

[3] Belov N.V., Neronova N.N., Mozaiki dlya 46 ploskih shubnikovskih grupp antisimmetrii i dlya 15 fedorovskih tsvetnih grupp, Kristallografiya 2, I, (1957), 21-22.

[4] Brunes T., The Secrets ofAncient Geometry, I, II, Rhodos, Copenhagen, 1964.

[5] Coxeter H.S.M., Introduction to Geometry, 2nd ed., Wiley, New York, 1969.

[6] Coxeter H.S.M., Regular Polytopes, 3rd ed., Dover, New York, 1973.

[7] Coxeter H.S.M., Regular Complex Polytopes, Cambridge University Press, Cambridge, 1974.

[8] Coxeter H.S.M., Moser W.OJ., Generators and Relations for Discrete Groups, 4th ed., Springer Verlag, Berlin, Heidelberg, New York, 1980.

[9] Crowe D.W., The Geometry of Mrican Art I. Bakuba Art, J. Geometry 1 (1971), 169-182.

[10] Crowe D.W., The Geometry of Mrican Art, II. A Catalog of Benin Patterns, Historia Math. 2 (1975),57-71.

[11] Crowe D.W., The Geometry of Mrican Art m. The Smoking Pipes of Begho, In The Geometric Vein, ed. C.Davis, B.Griinbaum and F.A.Sherk, Springer Verlag, Berlin, Heidelberg, New York, 1981.

[12] Crowe D.W., Washburn D.K., Groups and Geometry in the Ceramic Art of San lldefonso, Algebras, Groups and Geometries 3 (1985), 263-277.

[13] Eves H., An Introduction to History of Mathematics, Holt, Rinehart and Winston, New York, 1964.

[14] Garido J., Les groupes de symetrie des ornaments employes par les anciennes civilisations du Mexique, C.R. Acad. Sci. Paris 235 (1952),1184-1186.

[15] Hilbert D., Cohn-Vossen S., Geometry and the Imagination, Chelsea, New York,1952.

[16] Griinbaum B., The Emperor's New Clothes: Full Regalia, G string, or Nothing, Math. Inteligencer 6, 4 (1984), 47-53.

[17] Griinbaum B., Griinbaum Z., Shephard G.C., Symmetry in Moorish and Other Ornaments, Comput. Math. Appl. 12B, 3/4 (1986), 641-653.

[18] Grünbaum B., Shephard G.C., Tilings and Patterns, Freeman, San Francisco, 1987.

[19] Jablan S.V., Antisimetrijska ornamentika I, Dijalektika 1-4 (1985), 107-148.

[20] Jablan S.V., Antisimetrijska ornamentika II, Dijalektika 3-4 (1986), 13-56.

[21] Jablan S.v., Teorija antisimetrije i visestruke antisimetrije u E i E\{O}, Ph.D. Thesis, PMF, Beograd, 1984.

[22] Jablan S.V., Theory of Symmetry and Ornament, Mathematical Institute, Beograd, 1995.

[23] Lockwood E.H., Macmillan R.H., Geometric Symmetry, Cambridge University Press, London, New York, Melburne, 1978.

[24] Loeb A.L., Color and Symmetry, Wiley-Interscience, New York, 1971.

[25] Muller E., Gruppentheoretische und Strukturanalytische Untersuchungen der Maurischen Ornamente aus der Alhambra in Granada, Ph.D. Thesis, Univ. ZUrich, Ruschlikon, 1944.

[26] Nicolle J., La symmetrie dans la nature et les travaux des hommes, Vieux Colombier, Paris, 1965.

[27] P6lya G., Uber die Analogie der Kristallsymmetrie in der Ebene, Z. Kristall. 60 (1924), 278-282.

[28] Savelov A.V., Ploskie krivie, Gosizdat. fiz. mat. lit., Moskva, 1960.

[29] Shepard A.O., The Symmetry of Abstract Design with Special Reference to Ceramic Decoration, Carnegie Inst. of Washington, Publ. No. 575, Washington DC, 1948.

[30] Shubnikov A.V., Koptsik V.A., Symmetry in Science and Art, Plenum, New York, London, 1974.

[31] Shubnikov A.V., Belov N.V. et al., Colored Symmetry, Pergamon, Oxford, London, New York, Paris, 1964.

[32] Smeets R.;Signs, Symbols, & Ornaments, Van Nostrand, New York, Cincinnati, Toronto, London, Melbourne, 1975.

[33] Smith D.E., History of mathematics, I, II, Dover, New York, 1958.

[34] Speiser A., Die Theorie der Gruppen von endlicher Ordnung, 2nd ed., Berlin, 1927.

[35] Stroik DJ., A Concise History of Mathematics, 2nd ed., Dover, New York, 1948.

[36] Washburn D.K., A Symmetry Analysis of Upper Gila Area Ceramic Design, Carnegie Inst. of Washington, Publ. No. 574, Washington DC, 1977.

[37] Washburn D.K., Symmetry Analysis of Ceramic Design: Two Tests of the Method on Neolithic Material from Greece and the Aegean, In Structure and Cognition in Art, Cambridge University Press, London, 1983.

[38] Washburn D.K., Crowe D.W., Symmetries of Culture, University of Washington Press, Washington, 1988.

[39] Weyl H., Symmetry, Princeton University Press, Princeton, 1952.

[40] Zamorzaev A.M., Teoriya prostoi i kratnoi antisimmetrii, Shtiintsa, Kishinev, 1976.


Links

Full Text

http://archive.bridgesmathart.org/2000/bridges2000-1.pdf

intern file

Sonstige Links

http://archive.bridgesmathart.org/2000/bridges2000-1.html