A Survey on ROC-based Ordinal Regression: Unterschied zwischen den Versionen

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „ == Reference == Willem Waegeman, Bernard De Baets: A Survey on ROC-based Ordinal Regression. In: Fürnkranz, J. and Hüllermeier, E.: Preference Learning,…“)
 
Zeile 27: Zeile 27:
  
 
== Used References ==
 
== Used References ==
    1.
+
1. S.Agarwal, T.Graepel, R.Herbrich, S.Har-Peled, D.Roth, Generalization bounds for the area under the ROC curve. J. Mach. Learn. Res. 6, 393–425 (2005)MathSciNet
    S.Agarwal, T.Graepel, R.Herbrich, S.Har-Peled, D.Roth, Generalization bounds for the area under the ROC curve. J. Mach. Learn. Res. 6, 393–425 (2005)MathSciNet
+
      
     2.
+
2. A.Agresti, Categorical Data Analysis, 2nd version. (Wiley, 2002)
    A.Agresti, Categorical Data Analysis, 2nd version. (Wiley, 2002)
+
      
     3.
+
3.
 
     K.Ataman, N.Street, Y.Zhang, Learning to rank by maximizing AUC with linear programming, in Proceedings of the IEEE International Joint Conference on Neural Networks(Vancouver, BC, Canada, 2006), pp. 123–129
 
     K.Ataman, N.Street, Y.Zhang, Learning to rank by maximizing AUC with linear programming, in Proceedings of the IEEE International Joint Conference on Neural Networks(Vancouver, BC, Canada, 2006), pp. 123–129
     4.
+
      
 +
4.
 
     C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)CrossRef
 
     C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)CrossRef
     5.
+
      
 +
5.
 
     Z.Cao, T.Qin, T.Liu, M.Tsai, H.Li, Learning to rank: from pairwise approach to listwise approach, in Proceedings of the International Conference on Machine Learning(Corvallis, OR, USA, 2007), pp. 129–136
 
     Z.Cao, T.Qin, T.Liu, M.Tsai, H.Li, Learning to rank: from pairwise approach to listwise approach, in Proceedings of the International Conference on Machine Learning(Corvallis, OR, USA, 2007), pp. 129–136
     6.
+
      
 +
6.
 
     K.Cao-Van, Supervised Ranking, from semantics to algorithms. PhD thesis, Ghent University, Belgium, 2003
 
     K.Cao-Van, Supervised Ranking, from semantics to algorithms. PhD thesis, Ghent University, Belgium, 2003
    7.
+
 
 +
7.
 
     W.Chu, Z.Ghahramani, Gaussian processes for ordinal regression. J. Mach. Learn. Res. 6, 1019–1041 (2005)MathSciNetMATH
 
     W.Chu, Z.Ghahramani, Gaussian processes for ordinal regression. J. Mach. Learn. Res. 6, 1019–1041 (2005)MathSciNetMATH
     8.
+
      
 +
8.
 
     W.Chu, Z.Ghahramani, Preference learning with Gaussian processes, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 137–144
 
     W.Chu, Z.Ghahramani, Preference learning with Gaussian processes, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 137–144
     9.
+
      
 +
9.
 
     W.Chu, S.Keerthi, New approaches to support vector ordinal regression, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 321–328
 
     W.Chu, S.Keerthi, New approaches to support vector ordinal regression, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 321–328
     10.
+
      
 +
10.
 
     W.Chu, S.Keerthi, Support vector ordinal regression. Neural Comput. 19(3), 792–815 (2007)
 
     W.Chu, S.Keerthi, Support vector ordinal regression. Neural Comput. 19(3), 792–815 (2007)
     11.
+
      
 +
11.
 
     S.Clémençon, N.Vayatis, Ranking the best instances. J. Mach. Learn. Res. 8, 2671–2699 (2007)MathSciNetMATH
 
     S.Clémençon, N.Vayatis, Ranking the best instances. J. Mach. Learn. Res. 8, 2671–2699 (2007)MathSciNetMATH
     12.
+
      
 +
12.
 
     W.Cohen, R.Schapire, Y.Singer, Learning to order things, in Advances in Neural Information Processing Systems, vol.10 (MIT, Vancouver, Canada, 1998), pp. 451–457
 
     W.Cohen, R.Schapire, Y.Singer, Learning to order things, in Advances in Neural Information Processing Systems, vol.10 (MIT, Vancouver, Canada, 1998), pp. 451–457
     13.
+
      
 +
13.
 
     C.Cortes, M.Mohri, AUC optimization versus error rate minimization, in Advances in Neural Information Processing Systems, vol.16 (MIT, Vancouver, Canada, 2003), pp. 313–320
 
     C.Cortes, M.Mohri, AUC optimization versus error rate minimization, in Advances in Neural Information Processing Systems, vol.16 (MIT, Vancouver, Canada, 2003), pp. 313–320
     14.
+
      
 +
14.
 
     C.Cortes, M.Mohri. Confidence intervals for the area under the ROC curve, in Advances in Neural Information Processing Systems, vol.17 (MIT, Vancouver, Canada, 2004), pp. 305–312
 
     C.Cortes, M.Mohri. Confidence intervals for the area under the ROC curve, in Advances in Neural Information Processing Systems, vol.17 (MIT, Vancouver, Canada, 2004), pp. 305–312
     15.
+
      
 +
15.
 
     C.Cortes, M.Mohri, A.Rastogi, Magnitude-preserving ranking algorithms, in Proceedings of the International Conference on Machine Learning(Corvallis, OR, USA, 2007), pp. 169–176
 
     C.Cortes, M.Mohri, A.Rastogi, Magnitude-preserving ranking algorithms, in Proceedings of the International Conference on Machine Learning(Corvallis, OR, USA, 2007), pp. 169–176
     16.
+
      
 +
16.
 
     K.Crammer, Y.Singer, Pranking with ranking, in Proceedings of the Conference on Neural Information Processing Systems(Vancouver, Canada, 2001), pp. 641–647
 
     K.Crammer, Y.Singer, Pranking with ranking, in Proceedings of the Conference on Neural Information Processing Systems(Vancouver, Canada, 2001), pp. 641–647
     17.
+
      
 +
17.
 
     N.Cristianini, J.Shawe-Taylor, An Introduction to Support Vector Machines(Cambridge University Press, 2000)
 
     N.Cristianini, J.Shawe-Taylor, An Introduction to Support Vector Machines(Cambridge University Press, 2000)
     18.
+
      
 +
18.
 
     B.De Baets, H.De Meyer, Transitivity frameworks for reciprocal relations: cycle-transitivity versus { FG}-transitivity. Fuzzy Sets Syst. 152, 249–270 (2005)MATHCrossRef
 
     B.De Baets, H.De Meyer, Transitivity frameworks for reciprocal relations: cycle-transitivity versus { FG}-transitivity. Fuzzy Sets Syst. 152, 249–270 (2005)MATHCrossRef
     19.
+
      
 +
19.
 
     B.De Baets, H.De Meyer, B.De Schuymer, S.Jenei, Cyclic evaluation of transitivity of reciprocal relations. Soc. Choice Welfare 26, 217–238 (2006)MATHCrossRef
 
     B.De Baets, H.De Meyer, B.De Schuymer, S.Jenei, Cyclic evaluation of transitivity of reciprocal relations. Soc. Choice Welfare 26, 217–238 (2006)MATHCrossRef
     20.
+
      
 +
20.
 
     B.De Schuymer, H.De Meyer, B.De Baets, Cycle-transitive comparison of independent random variables. J. Multivar. Anal. 96, 352–373 (2005)MATHCrossRef
 
     B.De Schuymer, H.De Meyer, B.De Baets, Cycle-transitive comparison of independent random variables. J. Multivar. Anal. 96, 352–373 (2005)MATHCrossRef
     21.
+
      
 +
21.
 
     B.De Schuymer, H.De Meyer, B.De Baets, S.Jenei, On the cycle-transitivity of the dice model. Theory Decis. 54, 164–185 (2003)CrossRef
 
     B.De Schuymer, H.De Meyer, B.De Baets, S.Jenei, On the cycle-transitivity of the dice model. Theory Decis. 54, 164–185 (2003)CrossRef
     22.
+
      
 +
22.
 
     S.Dreiseitl, L.Ohno-Machado, M.Binder, Comparing three-class diagnostic tests by three-way ROC analysis. Med. Decis. Mak. 20, 323–331 (2000)CrossRef
 
     S.Dreiseitl, L.Ohno-Machado, M.Binder, Comparing three-class diagnostic tests by three-way ROC analysis. Med. Decis. Mak. 20, 323–331 (2000)CrossRef
     23.
+
      
 +
23.
 
     E.Frank, M.Hall, A simple approach to ordinal classification, in Proceedings of the European Conference on Machine Learning, (Freibourg, Germany, 2001), pp. 146–156
 
     E.Frank, M.Hall, A simple approach to ordinal classification, in Proceedings of the European Conference on Machine Learning, (Freibourg, Germany, 2001), pp. 146–156
     24.
+
      
 +
24.
 
     Y.Freund, R.Yier, R.Schapire, Y.Singer, An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)
 
     Y.Freund, R.Yier, R.Schapire, Y.Singer, An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)
     25.
+
      
 +
25.
 
     J.Fürnkranz, Round robin classification. J. Mach. Learn. Res. 2, 723–747 (2002)
 
     J.Fürnkranz, Round robin classification. J. Mach. Learn. Res. 2, 723–747 (2002)
     26.
+
      
 +
26.
 
     J.Fürnkranz, E.Hüllermeier, Pairwise preference learning and ranking. Lect. Notes Comput. Sci. 2837, 145–156 (2003)CrossRef
 
     J.Fürnkranz, E.Hüllermeier, Pairwise preference learning and ranking. Lect. Notes Comput. Sci. 2837, 145–156 (2003)CrossRef
     27.
+
      
 +
27.
 
     M.Gönen, G.Heller, Concordance probability and discriminatory power in proportional hazards regression. Biometrika 92(4), 965–970 (2005)MathSciNetMATHCrossRef
 
     M.Gönen, G.Heller, Concordance probability and discriminatory power in proportional hazards regression. Biometrika 92(4), 965–970 (2005)MathSciNetMATHCrossRef
     28.
+
      
 +
28.
 
     D.Hand, R.Till, A simple generalization of the area under the ROC curve for multiple class problems. Mach. Learn. 45, 171–186 (2001)MATHCrossRef
 
     D.Hand, R.Till, A simple generalization of the area under the ROC curve for multiple class problems. Mach. Learn. 45, 171–186 (2001)MATHCrossRef
     29.
+
      
 +
29.
 
     J.Hanley, B.McNeil, The meaning and use of the area under a receiver operating characteristics curve. Radiology 143, 29–36 (1982)
 
     J.Hanley, B.McNeil, The meaning and use of the area under a receiver operating characteristics curve. Radiology 143, 29–36 (1982)
     30.
+
      
 +
30.
 
     J.Hanley, B.McNeil, A method of comparing receiver operating characteristics curves derived from the same class. Radiology 148, 839–843 (1983)
 
     J.Hanley, B.McNeil, A method of comparing receiver operating characteristics curves derived from the same class. Radiology 148, 839–843 (1983)
     31.
+
      
 +
31.
 
     S.Har-Peled, D.Roth, D.Zimak, Constraint classification: A new approach to multi-class classification and ranking, in Advances in Neural Information Processing Systems, vol.15 (MIT, Vancouver, Canada, 2002), pp. 785–792
 
     S.Har-Peled, D.Roth, D.Zimak, Constraint classification: A new approach to multi-class classification and ranking, in Advances in Neural Information Processing Systems, vol.15 (MIT, Vancouver, Canada, 2002), pp. 785–792
     32.
+
      
 +
32.
 
     E.Harrington, Online ranking/collaborative filtering using the perceptron algorithm, in Proceedings of the 20th International Conference on Machine Learning(Washington, USA, 2003), pp. 250–257
 
     E.Harrington, Online ranking/collaborative filtering using the perceptron algorithm, in Proceedings of the 20th International Conference on Machine Learning(Washington, USA, 2003), pp. 250–257
     33.
+
      
 +
33.
 
     T.Hastie, R.Tibshirani, Classification by pairwise coupling. Ann. Stat. 26(2), 451–471 (1998)MathSciNetMATH
 
     T.Hastie, R.Tibshirani, Classification by pairwise coupling. Ann. Stat. 26(2), 451–471 (1998)MathSciNetMATH
     34.
+
      
 +
34.
 
     M.Heller, B.Schnörr, Learning sparse representations by non-negative matrix factorization and sequential cone programming. J. Mach. Learn. Res. 7, 1385–1407 (2006)MathSciNet
 
     M.Heller, B.Schnörr, Learning sparse representations by non-negative matrix factorization and sequential cone programming. J. Mach. Learn. Res. 7, 1385–1407 (2006)MathSciNet
     35.
+
      
 +
35.
 
     R.Herbrich, T.Graepel, K.Obermayer, Large margin rank boundaries for ordinal regression, in Advances in Large Margin Classifiers, ed. by A.Smola, P.Bartlett, B.Schölkopf, D.Schuurmans (MIT, 2000), pp. 115–132
 
     R.Herbrich, T.Graepel, K.Obermayer, Large margin rank boundaries for ordinal regression, in Advances in Large Margin Classifiers, ed. by A.Smola, P.Bartlett, B.Schölkopf, D.Schuurmans (MIT, 2000), pp. 115–132
     36.
+
      
 +
36.
 
     A.Herschtal, B.Raskutti, Optimizing area under the ROC curve using gradient descent, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 49–57
 
     A.Herschtal, B.Raskutti, Optimizing area under the ROC curve using gradient descent, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 49–57
     37.
+
      
 +
37.
 
     J.Higgins, Introduction to Modern Nonparametric Statistics(Duxbury, 2004)
 
     J.Higgins, Introduction to Modern Nonparametric Statistics(Duxbury, 2004)
     38.
+
      
 +
38.
 
     E.Hüllermeier, J.Hühn, Is an ordinal class structure useful in classifier learning? Int. J. Data Min. Model. Manag. 1(1), 45–67 (2009)
 
     E.Hüllermeier, J.Hühn, Is an ordinal class structure useful in classifier learning? Int. J. Data Min. Model. Manag. 1(1), 45–67 (2009)
     39.
+
      
 +
39.
 
     T.Joachims, A support vector method for multivariate performance measures, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 377–384
 
     T.Joachims, A support vector method for multivariate performance measures, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 377–384
     40.
+
      
 +
40.
 
     J.Kelley, The cutting plane method for convex programs. J. Soc. Ind. Appl. Math. 9, 703–712 (1960)MathSciNet
 
     J.Kelley, The cutting plane method for convex programs. J. Soc. Ind. Appl. Math. 9, 703–712 (1960)MathSciNet
     41.
+
      
 +
41.
 
     S.Kramer, G.Widmer, B.Pfahringer, M.Degroeve, Prediction of ordinal classes using regression trees. Fundam. Informaticae 24, 1–15 (2000)MathSciNet
 
     S.Kramer, G.Widmer, B.Pfahringer, M.Degroeve, Prediction of ordinal classes using regression trees. Fundam. Informaticae 24, 1–15 (2000)MathSciNet
     42.
+
      
 +
42.
 
     G.Lanckriet, N.Cristianini, P.Bartlett, L.El Gaoui, M.Jordan, Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)MATH
 
     G.Lanckriet, N.Cristianini, P.Bartlett, L.El Gaoui, M.Jordan, Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)MATH
     43.
+
      
 +
43.
 
     L.Lehmann, Nonparametrics: Statistical Methods based on Ranks(Holden Day, 1975)
 
     L.Lehmann, Nonparametrics: Statistical Methods based on Ranks(Holden Day, 1975)
     44.
+
      
 +
44.
 
     S.Lievens, B.De Baets, K.Cao-Van, A probabilistic framework for the design of instance-based supervised ranking algorithms in an ordinal setting. Ann. Oper. Res. 163, 115–142 (2008)MathSciNetMATHCrossRef
 
     S.Lievens, B.De Baets, K.Cao-Van, A probabilistic framework for the design of instance-based supervised ranking algorithms in an ordinal setting. Ann. Oper. Res. 163, 115–142 (2008)MathSciNetMATHCrossRef
     45.
+
      
 +
45.
 
     H.Lin, L.Li, Large-margin thresholded ensembles for ordinal regression: Theory and practice. Lect. Notes Comput. Sci. 4264, 319–333 (2006)CrossRef
 
     H.Lin, L.Li, Large-margin thresholded ensembles for ordinal regression: Theory and practice. Lect. Notes Comput. Sci. 4264, 319–333 (2006)CrossRef
     46.
+
      
 +
46.
 
     R.Luce, P.Suppes, Handbook of Mathematical Psychology, chapter Preference, Utility and Subjective Probability (Wiley, 1965), pp. 249–410
 
     R.Luce, P.Suppes, Handbook of Mathematical Psychology, chapter Preference, Utility and Subjective Probability (Wiley, 1965), pp. 249–410
     47.
+
      
 +
47.
 
     P.McCullagh, Regression models for ordinal data. J. R. Stat. Soc. B 42(2), 109–142 (1980)MathSciNetMATH
 
     P.McCullagh, Regression models for ordinal data. J. R. Stat. Soc. B 42(2), 109–142 (1980)MathSciNetMATH
     48.
+
      
 +
48.
 
     C.Nakas, C.Yiannoutsos, Ordered multiple-class ROC analysis with continuous measurements. Stat. Med. 22, 3437–3449 (2004)CrossRef
 
     C.Nakas, C.Yiannoutsos, Ordered multiple-class ROC analysis with continuous measurements. Stat. Med. 22, 3437–3449 (2004)CrossRef
     49.
+
      
 +
49.
 
     M.Öztürk, A.Tsoukiàs, Ph. Vincke, Preference modelling, in Multiple Criteria Decision Analysis. State of the Art Surveys, ed. by J.Figueira, S.Greco, M.Ehrgott (Springer, 2005), pp. 27–71
 
     M.Öztürk, A.Tsoukiàs, Ph. Vincke, Preference modelling, in Multiple Criteria Decision Analysis. State of the Art Surveys, ed. by J.Figueira, S.Greco, M.Ehrgott (Springer, 2005), pp. 27–71
     50.
+
      
 +
50.
 
     J.Platt, N.Cristianini, J.Shawe-Taylor, Large margin DAGs for multiclass classification. Adv. Neural Process. Syst. 12, 547–553 (2000)
 
     J.Platt, N.Cristianini, J.Shawe-Taylor, Large margin DAGs for multiclass classification. Adv. Neural Process. Syst. 12, 547–553 (2000)
     51.
+
      
 +
51.
 
     R.Potharst, J.C. Bioch, Decision trees for ordinal classification. Intell. Data Process. 4(2) (2000)
 
     R.Potharst, J.C. Bioch, Decision trees for ordinal classification. Intell. Data Process. 4(2) (2000)
     52.
+
      
 +
52.
 
     J.D. Rennie, N.Srebro, Loss functions for preference levels: Regression with discrete, ordered labels in Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference Handling, (Edinburgh, Scotland, 2005), pp. 180–186
 
     J.D. Rennie, N.Srebro, Loss functions for preference levels: Regression with discrete, ordered labels in Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference Handling, (Edinburgh, Scotland, 2005), pp. 180–186
     53.
+
      
 +
53.
 
     R.Rifkin, A.Klautau, In defense of one-versus-all classification. J. Mach. Learn. Res. 5, 101–143 (2004)MathSciNetMATH
 
     R.Rifkin, A.Klautau, In defense of one-versus-all classification. J. Mach. Learn. Res. 5, 101–143 (2004)MathSciNetMATH
     54.
+
      
 +
54.
 
     B.Schölkopf, A.Smola. Learning with Kernels, Support Vector Machines, Regularisation, Optimization and Beyond(MIT, 2002)
 
     B.Schölkopf, A.Smola. Learning with Kernels, Support Vector Machines, Regularisation, Optimization and Beyond(MIT, 2002)
     55.
+
      
 +
55.
 
     A.Shashua, A.Levin, Ranking with large margin principle: Two approaches, in Advances in Neural Information Processing Systems, vol.16 (MIT, Vancouver, Canada, 2003), pp. 937–944
 
     A.Shashua, A.Levin, Ranking with large margin principle: Two approaches, in Advances in Neural Information Processing Systems, vol.16 (MIT, Vancouver, Canada, 2003), pp. 937–944
     56.
+
      
 +
56.
 
     V.Torra, J.Domingo-Ferrer, J.M. Mateo-Sanz, M.Ng, Regression for ordinal variables without underlying continuous variables. Inf. Sci. 176, 465–476 (2006)MathSciNetCrossRef
 
     V.Torra, J.Domingo-Ferrer, J.M. Mateo-Sanz, M.Ng, Regression for ordinal variables without underlying continuous variables. Inf. Sci. 176, 465–476 (2006)MathSciNetCrossRef
     57.
+
      
 +
57.
 
     Y.Tsochantaridis, T.Joachims, T.Hofmann, Y.Altun, Large margin methods for structured and independent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)MathSciNetMATH
 
     Y.Tsochantaridis, T.Joachims, T.Hofmann, Y.Altun, Large margin methods for structured and independent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)MathSciNetMATH
     58.
+
      
 +
58.
 
     G.Tutz, K.Hechenbichler, Aggregating classifiers with ordinal response structure. J. Stat. Comput. Simul. 75(5), (2004)
 
     G.Tutz, K.Hechenbichler, Aggregating classifiers with ordinal response structure. J. Stat. Comput. Simul. 75(5), (2004)
     59.
+
      
 +
59.
 
     W.Waegeman, B.De Baets, On the ERA ranking representability of multi-class classifiers. Artif. Intell. (2009) submitted
 
     W.Waegeman, B.De Baets, On the ERA ranking representability of multi-class classifiers. Artif. Intell. (2009) submitted
     60.
+
      
 +
60.
 
     W.Waegeman, B.De Baets, L.Boullart, Learning a layered graph with a maximal number of paths connecting source and sink, in Proceedings of the ICML Workshop on Constrained Optimization and Structured Output Spaces(Corvallis, OR, USA, 2007)
 
     W.Waegeman, B.De Baets, L.Boullart, Learning a layered graph with a maximal number of paths connecting source and sink, in Proceedings of the ICML Workshop on Constrained Optimization and Structured Output Spaces(Corvallis, OR, USA, 2007)
     61.
+
      
 +
61.
 
     W.Waegeman, B.De Baets, L.Boullart, Learning layered ranking functions with structured support vector machines. Neural Netw. 21(10), 1511–1523 (2008)MATHCrossRef
 
     W.Waegeman, B.De Baets, L.Boullart, Learning layered ranking functions with structured support vector machines. Neural Netw. 21(10), 1511–1523 (2008)MATHCrossRef
     62.
+
      
 +
62.
 
     W.Waegeman, B.De Baets, L.Boullart, On the scalability of ordered multi-class ROC analysis. Comput. Stat. Data Anal. 52, 3371–3388 (2008)MATHCrossRef
 
     W.Waegeman, B.De Baets, L.Boullart, On the scalability of ordered multi-class ROC analysis. Comput. Stat. Data Anal. 52, 3371–3388 (2008)MATHCrossRef
     63.
+
      
 +
63.
 
     W.Waegeman, B.De Baets, L.Boullart, ROC analysis in ordinal regression learning. Pattern Recognit. Lett. 29, 1–9 (2008)CrossRef
 
     W.Waegeman, B.De Baets, L.Boullart, ROC analysis in ordinal regression learning. Pattern Recognit. Lett. 29, 1–9 (2008)CrossRef
     64.
+
      
 +
64.
 
     J.Xu, Y.Cao, H.Li, Y.Huang, Cost-sensitive learning of SVM for ranking, in Proceedings of the 17th European Conference on Machine Learning(Berlin, Germany, 2006), pp. 833–840
 
     J.Xu, Y.Cao, H.Li, Y.Huang, Cost-sensitive learning of SVM for ranking, in Proceedings of the 17th European Conference on Machine Learning(Berlin, Germany, 2006), pp. 833–840
     65.
+
      
 +
65.
 
     L.Yan, R.Dodier, M.Mozer, R.Wolniewiecz, Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic, in Proceedings of the International Conference on Machine Learning(Washington, DC, USA, 2003), pp. 848–855
 
     L.Yan, R.Dodier, M.Mozer, R.Wolniewiecz, Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic, in Proceedings of the International Conference on Machine Learning(Washington, DC, USA, 2003), pp. 848–855
     66.
+
      
 +
66.
 
     S.Yu, K.Yu, V.Tresp, H.Kriegel, Collaborative ordinal regression, in Proceedings of the International Conference on Machine Learning(Pittsburgh, PA, 2006), pp. 1089–1096
 
     S.Yu, K.Yu, V.Tresp, H.Kriegel, Collaborative ordinal regression, in Proceedings of the International Conference on Machine Learning(Pittsburgh, PA, 2006), pp. 1089–1096
  
Zeile 168: Zeile 231:
  
 
=== Sonstige Links ===
 
=== Sonstige Links ===
 +
W. Waegeman: Learning  to  Rank:  a  ROC-based  Graph-Theoretic  Approach. 4OR quarterly journal of the Belgian, French and Italian Operations Research Societies 7(4): 399-402 · November 2009 http://link.springer.com/article/10.1007%2Fs10288-009-0095-y
 +
 +
W. Waegeman. Learning to Rank: a ROC-based Graph-Theoretic Approach, Ghent University, October 2008 http://users.ugent.be/~wwaegemn/thesis.pdf

Version vom 29. November 2015, 14:12 Uhr

Reference

Willem Waegeman, Bernard De Baets: A Survey on ROC-based Ordinal Regression. In: Fürnkranz, J. and Hüllermeier, E.: Preference Learning, 2011, 127-154.

DOI

http://dx.doi.org/10.1007/978-3-642-14125-6_7

Abstract

Ordinal regression can be seen as a special case of preference learning, in which the class labels corresponding with data instances can take values from an ordered finite set. In such a setting, the classes usually have a linguistic interpretation attached by humans to subdivide the data into a number of preference bins. In this chapter, we give a general survey on ordinal regression from a machine learning point of view. In particular, we elaborate on some important connections with ROC analysis that have been introduced recently by the present authors. First, the important role of an underlying ranking function in ordinal regression models is discussed, as well as its impact on the performance evaluation of such models. Subsequently, we describe a new ROC-based performance measure that directly evaluates the underlying ranking function, and we place it in the more general context of ROC analysis as the volume under an r-dimensional ROC surface (VUS) for in general rclasses. Furthermore, we also discuss the scalability of this measure and show that it can be computed very efficiently for large samples. Finally, we present a kernel-based learning algorithm that optimizes VUS as a specific case of structured support vector machines.

Extended Abstract

Bibtex

@incollection{
year={2011},
isbn={978-3-642-14124-9},
booktitle={Preference Learning},
editor={Fürnkranz, Johannes and Hüllermeier, Eyke},
doi={10.1007/978-3-642-14125-6_7},
title={A Survey on ROC-based Ordinal Regression},
url={http://dx.doi.org/10.1007/978-3-642-14125-6_7, http://de.evo-art.org/index.php?title=A_Survey_on_ROC-based_Ordinal_Regression },
publisher={Springer Berlin Heidelberg},
author={Waegeman, Willem and Baets, BernardDe},
pages={127-154},
language={English}
}

Used References

1. S.Agarwal, T.Graepel, R.Herbrich, S.Har-Peled, D.Roth, Generalization bounds for the area under the ROC curve. J. Mach. Learn. Res. 6, 393–425 (2005)MathSciNet

2. A.Agresti, Categorical Data Analysis, 2nd version. (Wiley, 2002)

3.

   K.Ataman, N.Street, Y.Zhang, Learning to rank by maximizing AUC with linear programming, in Proceedings of the IEEE International Joint Conference on Neural Networks(Vancouver, BC, Canada, 2006), pp. 123–129
   

4.

   C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)CrossRef
   

5.

   Z.Cao, T.Qin, T.Liu, M.Tsai, H.Li, Learning to rank: from pairwise approach to listwise approach, in Proceedings of the International Conference on Machine Learning(Corvallis, OR, USA, 2007), pp. 129–136
   

6.

   K.Cao-Van, Supervised Ranking, from semantics to algorithms. PhD thesis, Ghent University, Belgium, 2003
  

7.

   W.Chu, Z.Ghahramani, Gaussian processes for ordinal regression. J. Mach. Learn. Res. 6, 1019–1041 (2005)MathSciNetMATH
   

8.

   W.Chu, Z.Ghahramani, Preference learning with Gaussian processes, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 137–144
   

9.

   W.Chu, S.Keerthi, New approaches to support vector ordinal regression, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 321–328
   

10.

   W.Chu, S.Keerthi, Support vector ordinal regression. Neural Comput. 19(3), 792–815 (2007)
   

11.

   S.Clémençon, N.Vayatis, Ranking the best instances. J. Mach. Learn. Res. 8, 2671–2699 (2007)MathSciNetMATH
   

12.

   W.Cohen, R.Schapire, Y.Singer, Learning to order things, in Advances in Neural Information Processing Systems, vol.10 (MIT, Vancouver, Canada, 1998), pp. 451–457
   

13.

   C.Cortes, M.Mohri, AUC optimization versus error rate minimization, in Advances in Neural Information Processing Systems, vol.16 (MIT, Vancouver, Canada, 2003), pp. 313–320
   

14.

   C.Cortes, M.Mohri. Confidence intervals for the area under the ROC curve, in Advances in Neural Information Processing Systems, vol.17 (MIT, Vancouver, Canada, 2004), pp. 305–312
   

15.

   C.Cortes, M.Mohri, A.Rastogi, Magnitude-preserving ranking algorithms, in Proceedings of the International Conference on Machine Learning(Corvallis, OR, USA, 2007), pp. 169–176
   

16.

   K.Crammer, Y.Singer, Pranking with ranking, in Proceedings of the Conference on Neural Information Processing Systems(Vancouver, Canada, 2001), pp. 641–647
   

17.

   N.Cristianini, J.Shawe-Taylor, An Introduction to Support Vector Machines(Cambridge University Press, 2000)
   

18.

   B.De Baets, H.De Meyer, Transitivity frameworks for reciprocal relations: cycle-transitivity versus { FG}-transitivity. Fuzzy Sets Syst. 152, 249–270 (2005)MATHCrossRef
   

19.

   B.De Baets, H.De Meyer, B.De Schuymer, S.Jenei, Cyclic evaluation of transitivity of reciprocal relations. Soc. Choice Welfare 26, 217–238 (2006)MATHCrossRef
   

20.

   B.De Schuymer, H.De Meyer, B.De Baets, Cycle-transitive comparison of independent random variables. J. Multivar. Anal. 96, 352–373 (2005)MATHCrossRef
   

21.

   B.De Schuymer, H.De Meyer, B.De Baets, S.Jenei, On the cycle-transitivity of the dice model. Theory Decis. 54, 164–185 (2003)CrossRef
   

22.

   S.Dreiseitl, L.Ohno-Machado, M.Binder, Comparing three-class diagnostic tests by three-way ROC analysis. Med. Decis. Mak. 20, 323–331 (2000)CrossRef
   

23.

   E.Frank, M.Hall, A simple approach to ordinal classification, in Proceedings of the European Conference on Machine Learning, (Freibourg, Germany, 2001), pp. 146–156
   

24.

   Y.Freund, R.Yier, R.Schapire, Y.Singer, An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)
   

25.

   J.Fürnkranz, Round robin classification. J. Mach. Learn. Res. 2, 723–747 (2002)
   

26.

   J.Fürnkranz, E.Hüllermeier, Pairwise preference learning and ranking. Lect. Notes Comput. Sci. 2837, 145–156 (2003)CrossRef
   

27.

   M.Gönen, G.Heller, Concordance probability and discriminatory power in proportional hazards regression. Biometrika 92(4), 965–970 (2005)MathSciNetMATHCrossRef
   

28.

   D.Hand, R.Till, A simple generalization of the area under the ROC curve for multiple class problems. Mach. Learn. 45, 171–186 (2001)MATHCrossRef
   

29.

   J.Hanley, B.McNeil, The meaning and use of the area under a receiver operating characteristics curve. Radiology 143, 29–36 (1982)
   

30.

   J.Hanley, B.McNeil, A method of comparing receiver operating characteristics curves derived from the same class. Radiology 148, 839–843 (1983)
   

31.

   S.Har-Peled, D.Roth, D.Zimak, Constraint classification: A new approach to multi-class classification and ranking, in Advances in Neural Information Processing Systems, vol.15 (MIT, Vancouver, Canada, 2002), pp. 785–792
   

32.

   E.Harrington, Online ranking/collaborative filtering using the perceptron algorithm, in Proceedings of the 20th International Conference on Machine Learning(Washington, USA, 2003), pp. 250–257
   

33.

   T.Hastie, R.Tibshirani, Classification by pairwise coupling. Ann. Stat. 26(2), 451–471 (1998)MathSciNetMATH
   

34.

   M.Heller, B.Schnörr, Learning sparse representations by non-negative matrix factorization and sequential cone programming. J. Mach. Learn. Res. 7, 1385–1407 (2006)MathSciNet
   

35.

   R.Herbrich, T.Graepel, K.Obermayer, Large margin rank boundaries for ordinal regression, in Advances in Large Margin Classifiers, ed. by A.Smola, P.Bartlett, B.Schölkopf, D.Schuurmans (MIT, 2000), pp. 115–132
   

36.

   A.Herschtal, B.Raskutti, Optimizing area under the ROC curve using gradient descent, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 49–57
   

37.

   J.Higgins, Introduction to Modern Nonparametric Statistics(Duxbury, 2004)
   

38.

   E.Hüllermeier, J.Hühn, Is an ordinal class structure useful in classifier learning? Int. J. Data Min. Model. Manag. 1(1), 45–67 (2009)
   

39.

   T.Joachims, A support vector method for multivariate performance measures, in Proceedings of the International Conference on Machine Learning(Bonn, Germany, 2005), pp. 377–384
   

40.

   J.Kelley, The cutting plane method for convex programs. J. Soc. Ind. Appl. Math. 9, 703–712 (1960)MathSciNet
   

41.

   S.Kramer, G.Widmer, B.Pfahringer, M.Degroeve, Prediction of ordinal classes using regression trees. Fundam. Informaticae 24, 1–15 (2000)MathSciNet
   

42.

   G.Lanckriet, N.Cristianini, P.Bartlett, L.El Gaoui, M.Jordan, Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)MATH
   

43.

   L.Lehmann, Nonparametrics: Statistical Methods based on Ranks(Holden Day, 1975)
   

44.

   S.Lievens, B.De Baets, K.Cao-Van, A probabilistic framework for the design of instance-based supervised ranking algorithms in an ordinal setting. Ann. Oper. Res. 163, 115–142 (2008)MathSciNetMATHCrossRef
   

45.

   H.Lin, L.Li, Large-margin thresholded ensembles for ordinal regression: Theory and practice. Lect. Notes Comput. Sci. 4264, 319–333 (2006)CrossRef
   

46.

   R.Luce, P.Suppes, Handbook of Mathematical Psychology, chapter Preference, Utility and Subjective Probability (Wiley, 1965), pp. 249–410
   

47.

   P.McCullagh, Regression models for ordinal data. J. R. Stat. Soc. B 42(2), 109–142 (1980)MathSciNetMATH
   

48.

   C.Nakas, C.Yiannoutsos, Ordered multiple-class ROC analysis with continuous measurements. Stat. Med. 22, 3437–3449 (2004)CrossRef
   

49.

   M.Öztürk, A.Tsoukiàs, Ph. Vincke, Preference modelling, in Multiple Criteria Decision Analysis. State of the Art Surveys, ed. by J.Figueira, S.Greco, M.Ehrgott (Springer, 2005), pp. 27–71
   

50.

   J.Platt, N.Cristianini, J.Shawe-Taylor, Large margin DAGs for multiclass classification. Adv. Neural Process. Syst. 12, 547–553 (2000)
   

51.

   R.Potharst, J.C. Bioch, Decision trees for ordinal classification. Intell. Data Process. 4(2) (2000)
   

52.

   J.D. Rennie, N.Srebro, Loss functions for preference levels: Regression with discrete, ordered labels in Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference Handling, (Edinburgh, Scotland, 2005), pp. 180–186
   

53.

   R.Rifkin, A.Klautau, In defense of one-versus-all classification. J. Mach. Learn. Res. 5, 101–143 (2004)MathSciNetMATH
   

54.

   B.Schölkopf, A.Smola. Learning with Kernels, Support Vector Machines, Regularisation, Optimization and Beyond(MIT, 2002)
   

55.

   A.Shashua, A.Levin, Ranking with large margin principle: Two approaches, in Advances in Neural Information Processing Systems, vol.16 (MIT, Vancouver, Canada, 2003), pp. 937–944
   

56.

   V.Torra, J.Domingo-Ferrer, J.M. Mateo-Sanz, M.Ng, Regression for ordinal variables without underlying continuous variables. Inf. Sci. 176, 465–476 (2006)MathSciNetCrossRef
   

57.

   Y.Tsochantaridis, T.Joachims, T.Hofmann, Y.Altun, Large margin methods for structured and independent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)MathSciNetMATH
   

58.

   G.Tutz, K.Hechenbichler, Aggregating classifiers with ordinal response structure. J. Stat. Comput. Simul. 75(5), (2004)
   

59.

   W.Waegeman, B.De Baets, On the ERA ranking representability of multi-class classifiers. Artif. Intell. (2009) submitted
   

60.

   W.Waegeman, B.De Baets, L.Boullart, Learning a layered graph with a maximal number of paths connecting source and sink, in Proceedings of the ICML Workshop on Constrained Optimization and Structured Output Spaces(Corvallis, OR, USA, 2007)
   

61.

   W.Waegeman, B.De Baets, L.Boullart, Learning layered ranking functions with structured support vector machines. Neural Netw. 21(10), 1511–1523 (2008)MATHCrossRef
   

62.

   W.Waegeman, B.De Baets, L.Boullart, On the scalability of ordered multi-class ROC analysis. Comput. Stat. Data Anal. 52, 3371–3388 (2008)MATHCrossRef
   

63.

   W.Waegeman, B.De Baets, L.Boullart, ROC analysis in ordinal regression learning. Pattern Recognit. Lett. 29, 1–9 (2008)CrossRef
   

64.

   J.Xu, Y.Cao, H.Li, Y.Huang, Cost-sensitive learning of SVM for ranking, in Proceedings of the 17th European Conference on Machine Learning(Berlin, Germany, 2006), pp. 833–840
   

65.

   L.Yan, R.Dodier, M.Mozer, R.Wolniewiecz, Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic, in Proceedings of the International Conference on Machine Learning(Washington, DC, USA, 2003), pp. 848–855
   

66.

   S.Yu, K.Yu, V.Tresp, H.Kriegel, Collaborative ordinal regression, in Proceedings of the International Conference on Machine Learning(Pittsburgh, PA, 2006), pp. 1089–1096


Links

Full Text

intern file

Sonstige Links

W. Waegeman: Learning to Rank: a ROC-based Graph-Theoretic Approach. 4OR quarterly journal of the Belgian, French and Italian Operations Research Societies 7(4): 399-402 · November 2009 http://link.springer.com/article/10.1007%2Fs10288-009-0095-y

W. Waegeman. Learning to Rank: a ROC-based Graph-Theoretic Approach, Ghent University, October 2008 http://users.ugent.be/~wwaegemn/thesis.pdf