Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Reference

Joachim Giesen, Klaus Mueller, Bilyana Taneva, Peter Zolliker : Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models. In: Fürnkranz, J. and Hüllermeier, E.: Preference Learning, 2011, 297-315.

DOI

http://dx.doi.org/10.1007/978-3-642-14125-6_14

Abstract

Conjoint analysis is a family of techniques that originated in psychology and later became popular in market research. The main objective of conjoint analysis is to measure an individual’s or a population’s preferences on a class of options that can be described by parameters and their levels. We consider preference data obtained in choice-based conjoint analysis studies, where one observes test persons’ choices on small subsets of the options. There are many ways to analyze choice-based conjoint analysis data. Here we discuss the intuition behind a classification based approach, and compare this approach to one based on statistical assumptions (discrete choice models) and to a regression approach. Our comparison on real and synthetic data indicates that the classification approach outperforms the discrete choice models.

Extended Abstract

Bibtex

@incollection{
year={2011},
isbn={978-3-642-14124-9},
booktitle={Preference Learning},
editor={Fürnkranz, Johannes and Hüllermeier, Eyke},
doi={10.1007/978-3-642-14125-6_14},
title={Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models},
url={http://dx.doi.org/10.1007/978-3-642-14125-6_14, http://de.evo-art.org/index.php?title=Choice-Based_Conjoint_Analysis:_Classification_vs._Discrete_Choice_Models },
publisher={Springer Berlin Heidelberg},
author={Giesen, Joachim and Mueller, Klaus and Taneva, Bilyana and Zolliker, Peter},
pages={297-315},
language={English}
}

Used References

1. R.A. Bradley, M.E. Terry, Rank analysis of incomplete block designs, i. the method of paired comparisons. Biometrika 39, 324–345 (1952)

2. T. Evgeniou, M. Pontil, T. Poggio, Regularization networks and support vector machines. Adv. Comput. Math. 13(1), 1–50 (2000) http://dx.doi.org/10.1023/A%3A1018946025316

3. T. Evgeniou, C. Boussios, G. Zacharia, Generalized robust conjoint estimation. Mark. Sci. 24(3), 415–429 (2005)

4. J. Giesen, Choice based conjoint analysis as the geometric dual of a classification problem. Manuscript, 2009

5. J. Giesen, K. Mueller, E. Schuberth, L. Wang, P. Zolliker, Conjoint analysis to measure the perceived quality in volume rendering. IEEE Trans. Vis. Comput. Graph. 13(6), 1664–1671 (2007) http://dx.doi.org/10.1109/TVCG.2007.70542

6. A.Gustafsson, A.Herrmann, F.Huber, Conjoint analysis as aninstrumentofmarketresearch practice, in Conjoint Measurement. Methods and Applications, ed. by A.Gustafsson, A.Herrmann, F.Huber (Springer, Berlin, 2000), pp. 5–45 http://dx.doi.org/10.1007/978-3-662-06395-8_1

7. T. Kamishima, H. Kazawa, S. Akaho, A survey and empirical comparison of object ranking methods, in Preference Learning, ed. by J.Fürnkranz, E.Hüllermeier (Springer, 2010)

8. R.L. Keeney, H.Raiffa, Decisions with Multiple Objectives: Preferences and Value Trade-Offs (Cambridge University Press, Cambridge, 1993)

9. L.L. Thurstone, A law of comparative judgement. Psychol. Rev. 34, 273–286 (1927) http://dx.doi.org/10.1037/h0070288

10. K.Train, Discrete Choice Methods with Simulation (Cambridge University Press, 2003)


Links

Full Text

http://cvc.cs.sunysb.edu/Publications/2011/GMTZ11/cbca.pdf

intern file

Sonstige Links