Computerized measures of visual complexity

Aus de_evolutionary_art_org
Version vom 15. Juni 2016, 13:57 Uhr von Gubachelier (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „== Referenz == P. Machado, J. Romero, M. Nadal, A. Santos, J. Correia, and A. Carballal: Computerized measures of visual complexity. Acta Psychologica, vo…“)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Referenz

P. Machado, J. Romero, M. Nadal, A. Santos, J. Correia, and A. Carballal: Computerized measures of visual complexity. Acta Psychologica, vol. 160, iss. 1, pp. 43-57, 2015.

DOI

http://dx.doi.org/10.1016/j.actpsy.2015.06.005

Abstract

Visual complexity influences people's perception of, preference for, and behaviour toward many classes of objects, from artworks to web pages. The ability to predict people's impression of the complexity of different kinds of visual stimuli holds, therefore, great potential for many domains, basic and applied. Here we use edge detection operations and several image metrics based on image compression error and Zipf's law to estimate the visual complexity of images. The experiments involved 800 images, each previously rated by thirty participants on perceived complexity. In a first set of experiments we analysed the correlation of individual features with the average human response, obtaining correlations up to rs = .771. In a second set of experiments we employed Machine Learning techniques to predict the average visual complexity score attributed by humans to each stimuli. The best configurations obtained a correlation of rs = .832. The average prediction error of the Machine Learning system over the set of all stimuli was .096 in a normalized 0 to 1 interval, showing that it is possible to predict, with high accuracy human responses. Overall, edge density and compression error were the strongest predictors of human complexity ratings.

Extended Abstract

Bibtex

@article{Machado201543,
title = "Computerized measures of visual complexity ",
journal = "Acta Psychologica ",
volume = "160",
number = "",
pages = "43 - 57",
year = "2015",
note = "",
issn = "0001-6918",
doi = "http://dx.doi.org/10.1016/j.actpsy.2015.06.005",
url = "http://www.sciencedirect.com/science/article/pii/S0001691815300160 http://de.evo-art.org/index.php?title=Computerized_measures_of_visual_complexity ",
author = "Penousal Machado and Juan Romero and Marcos Nadal and Antonino Santos and João Correia and Adrián Carballal",
keywords = "Visual complexity",
keywords = "Psychological aesthetics",
keywords = "Vision",
keywords = "Machine learning "
}

Used References

Alario, F. -X., & Ferrand, L. (1999). A set of 400 pictures standardized from French: Norms for name agreement, image agreement, familiarity, visual complexity, image variability, and age of acquisition. Behavior Research Methods, Instruments, & Computers, 31, 531–552. https://www.researchgate.net/publication/12797319_A_set_of_400_pictures_standardized_for_French_Norms_for_name_agreement_image_agreement_familiarity_visual_complexity_image_variability_and_age_of_acquisition_Behavior_Research_Methods_Instruments_Comp

Arnheim, R. (1966). Towards a psychology of art/entropy and art—An essay on disorder and order. The Regents of the University of California.

Attneave, F. (1957). Physical determinants of the judged complexity of shapes. Journal of Experimental Psychology, 53, 221–227.

Bauerly, M., & Liu, Y. (2008). Effects of symmetry and number of compositional elements on interface and design aesthetics. International Journal of Human Computer Interaction, 24, 275–287. https://www.researchgate.net/publication/288495065_Effects_of_Symmetry_and_Number_of_Compositional_Elements_on_Interface_and_Design_Aesthetics?el=1_x_8&enrichId=rgreq-ab579933c2c63fab322680cabd311339-XXX&enrichSource=Y292ZXJQYWdlOzI3OTk1NDY0MztBUzozMzIwMTE5MTE4Mjc0NjBAMTQ1NjE2OTIxNjc4OA==

Berlyne, D.E. (1963). Complexity and incongruity variables as determinants of exploratory choice and evaluative ratings. Canadian Journal of Psychology, 17, 274–290. https://www.researchgate.net/publication/9518071_Complexity_and_incongruity_variables_as_determinants_of_exploratory_choice_and_evaluative_ratings

Berlyne, D.E. (1970). Novelty, complexity, and hedonic value. Perception & Psychophysics, 8, 279–286. https://www.researchgate.net/publication/225680366_Novelty_Complexity_and_Hedonic_Value?el=1_x_8&enrichId=rgreq-ab579933c2c63fab322680cabd311339-XXX&enrichSource=Y292ZXJQYWdlOzI3OTk1NDY0MztBUzozMzIwMTE5MTE4Mjc0NjBAMTQ1NjE2OTIxNjc4OA==

Berlyne, D.E. (1971). Aesthetics and psychobiology. New York: Appleton-Century-Crofts. https://www.researchgate.net/publication/269451060_Aesthetics_and_Psychobiology?el=1_x_8&enrichId=rgreq-ab579933c2c63fab322680cabd311339-XXX&enrichSource=Y292ZXJQYWdlOzI3OTk1NDY0MztBUzozMzIwMTE5MTE4Mjc0NjBAMTQ1NjE2OTIxNjc4OA==

Berlyne, D.E. (1974). Novelty, complexity, and interestingness. In D.E. Berlyne (Ed.), Studies in the new experimental aesthetics: Steps toward an objective psychology of aesthetic appreciation (pp. 175–180). Washington, D. C.: Hemisphere Publishing Corporation.

Berlyne, D.E., Ogilvie, J.C., & Parham, L.C.C. (1968). The dimensionality of visual complexity, interestingness, and pleasingness. Canadian Journal of Psychology, 22, 376–387. https://www.researchgate.net/publication/17460547_The_dimensionality_of_visual_complexity_interestingness_and_pleasingness?el=1_x_8&enrichId=rgreq-ab579933c2c63fab322680cabd311339-XXX&enrichSource=Y292ZXJQYWdlOzI3OTk1NDY0MztBUzozMzIwMTE5MTE4Mjc0NjBAMTQ1NjE2OTIxNjc4OA==

Bertamini, M., Palumbo, L., Gheorghes, T.N., & Galatsidas, M. (2015). Do observers like curvature or do they dislike angularity? British Journal of Psychology. http://dx.doi.org/10.1111/bjop.12132 (in press). https://www.researchgate.net/publication/274903267_Do_observers_like_curvature_or_do_they_dislike_angularity?el=1_x_8&enrichId=rgreq-ab579933c2c63fab322680cabd311339-XXX&enrichSource=Y292ZXJQYWdlOzI3OTk1NDY0MztBUzozMzIwMTE5MTE4Mjc0NjBAMTQ1NjE2OTIxNjc4OA==

Birkhoff, G.D. (1932). Aesthetic measure. Cambridge, Mass.: Harvard University Press.

Bonin, P., Peereman, R., Malardier, N., Méot, A., & Chalard, M. (2003). A newset of 299 pictures for psycholinguistic studies: French norms for name agreement, image agreement, conceptual familiarity, visual complexity, image variability, age of acquisition, and naming latencies. Behavior Research Methods, Instruments, & Computers, 35, 158–167. https://www.researchgate.net/publication/10779789_A_new_set_of_299_pictures_for_psycholinguistic_studies_French_norms_for_name_agreement_image_agreement_conceptual_familiarity_visual_complexity_image_variability_age_of_acquisition_and_naming_latencie?el=1_x_8&enrichId=rgreq-ab579933c2c63fab322680cabd311339-XXX&enrichSource=Y292ZXJQYWdlOzI3OTk1NDY0MztBUzozMzIwMTE5MTE4Mjc0NjBAMTQ1NjE2OTIxNjc4OA==

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6). Cela-Conde, C.J., Ayala, F.J., Munar, E., Maestú, F., Nadal, M., & Capó, M.A. (2009). Sexrelated similarities and differences in the neural correlates of beauty. Proceedings of the National Academy of Sciences of the United States of America, 106, 3847–3852. Cela-Conde, C.J., Marty, G., Maestú, F., Ortiz, T., Munar, E., & Fernández, A. (2004). Activation of the prefrontal cortex in the human visual aesthetic perception. Proceedings of the National Academy of Sciences of the United States of America, 101, 6321–6325. Chatterjee, A. (2004). Prospects for a cognitive neuroscience of visual aesthetics. Bulletin of psychology and the arts, 4, 55–60. Cottington, D. (1998). Cubism. London: Tate Gallery Publishing. Cupchik, G.C. (1986). A decade after Berlyne. New directions in experimental aesthetics. Poetics, 15, 345–369. Donderi, D.C. (2003). A complexity measure for electronic displays: Final report on the experiments. Toronto: Department of National Defence, Defence Research and Development Canada. Donderi, D.C. (2006). Visual complexity: A review. Psychological Bulletin, 132, 73–97. Donderi, D.C., & McFadden, S. (2005). Compressed file length predicts search time and errors on visual displays. Displays, 26, 71–78. Eysenck, H.J. (1941). The empirical determination of an aesthetic formula. Psychological Review, 48, 83–92. Eysenck, H.J. (1942). The experimental study of the ‘Good Gestalt’ — A new approach. Psychological Review, 49, 344–363. Eysenck, H.J., & Castle, M. (Aug 1971). Comparative study of artists and nonartists on the Maitland Graves design judgment test. Journal of Applied Psychology, 55(4), 389–392. http://dx.doi.org/10.1037/h0031469. Fechner, G.T. (1876). Vorschule der Ästhetik. Leipzig: Breitkopf und Härtel. Fisher, Y. (Ed.). (1995). Fractal image compression: Theory and application. London: Springer Verlag. Forsythe, A., Mulhern, G., & Sawey, M. (2008). Confounds in pictorial sets: The role of complexity and familiarity in basic-level picture processing. Behavior Research Methods, 40, 116–129. Forsythe, A., Nadal, M., Sheehy, N., Cela-Conde, C.J., & Sawey, M. (2011). Predicting beauty: Fractal dimension and visual complexity in art. British Journal of Psychology, 102, 49–70. Forsythe, A., Sheehy, N., & Sawey, M. (2003). Measuring icon complexity: An automated analysis. Behavior Research Methods, Instruments, & Computers, 35, 334–342. García, M., Badre, A.N., & Stasko, J.T. (1994). Development and validation of icons varying in their abstractness. Interacting with computers, 6, 191–211. Gooding, M. (2001). Abstract art. London: Tate Gallery Publishing. Graves, M. (1948). Design judgement test. New York: The Psychological Corporation. Haykin, S. (1994). Neural networks: A comprehensive foundation. Prentice Hall PTR. Heath, T., Smith, S.G., & Lim, B. (2000). Tall buildings and the urban skyline. The effect of visual complexity on preferences. Environment and Behavior, 32, 541–556. Imamoglu, C. (2000). Complexity, liking and familiarity: Architecture and nonarchitecture Turkish students' assessments of traditional and modern house facades. Journal of Environmental Psychology, 20, 5–16. Jones-Smith, K., & Mathur, H. (2006). Fractal analysis: Revisiting Pollock's drip paintings. Nature, 444, E9–E10. Krishen, A., Kamra, K., & Mac, F. (2008). Perceived versus actual complexity for websites: Their relationship to consumer satisfaction. Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior, 21, 104–123. Lang, P.J., Bradley, M.M., & Cuthbert, B.N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report (pp. A −7). Gainesville, FL: University of Florida. Lavie, T., Oron-Gilad, T., & Meyer, J. (2011). Aesthetics and usability of in-vehicle navigation displays. International Journal of Human-Computer Studies, 69, 80–89. Lavie, T., & Tractinsky, N. (2004). Assessing dimensions of perceived visual aesthetics of web sites. International Journal of Human-Computer Studies, 60, 269–298. Leder, H., Belke, B., Oeberst, A., & Augustin, D. (2004). A model of aesthetic appreciation and aesthetic judgments. British Journal of Psychology, 95, 489–508. Leeuwenberg, E.L.J. (1968). Structural information of visual patterns: An efficient coding system in perception. The Hague: Mouton. Leeuwenberg, E.L.J. (1969). Quantitative specification of information in sequential patterns. Psychological Review, 76, 216–220. Machado, P. (2007). Inteligncia Artificial e Arte. (Ph.D. thesis) Coimbra, Portugal: University of Coimbra (in Portuguese). Machado, P., & Cardoso, A. (1998). Computing aesthetics. In F. Oliveira (Ed.), XIVth Brazilian Symposium on Artificial Intelligence SBIA'98. LNAI Series. (pp. 219–229). Porto Alegre, Brazil: Springer. Machado, P., & Cardoso, A. (2002). All the truth about NEvAr. Applied Intelligence, Special Issue on Creative Systems, 16(2), 101–119. Machado, P., Romero, J., Cardoso, A., & Santos, A. (2005). Partially interactive evolutionary artists. New Generation Computing, 23(42), 143–155. Machado, P., Romero, J., & Manaris, B. (2007). Experiments in computational aesthetics: An iterative approach to stylistic change in evolutionary art. In J. Romero, & P. Machado (Eds.), Springer Berlin Heidelberg. Machado, P., Romero, J., Santos, A., Cardoso, A., & Pazos, A. (2007). On the development of evolutionary artificial artists. Computers & Graphics, 31(6), 818–826. Malpas, J. (1997). Realism. London: Tate Gallery Publishing.

Manaris, B., Purewal, T., & McCormick, C. (2002). Progress towards recognizing and classifying beautiful music with computers—Midi-encoded music and the zipfmandelbrot law. Proceedings of the IEEE southeastcon 2002 conference, Columbia.

Manaris, B., Vaughan, D., Wagner, C., Romero, J., & Davis, R.B. (2003). Evolutionary music and the Zipf–Mandelbrot Law: Progress towards developing fitness functions for pleasant music. EvoMUSART2003—1st European Workshop on Evolutionary Music and Art, Essex, UK. Lecture Notes in Computer Science, Applications of Evolutionary Computing, LNCS, 2611. (pp. 522–534). Springer.

Marin, M., & Leder, H. (2013). Examining complexity across domains: relating subjective and objective measures of affective environmental scenes, paintings and music. PLoS One, 8(8), e72412. http://dx.doi.org/10.1371/journal.pone.0072412.

McDougall, S.J.P., Curry, M.B., & de Bruijn, O. (1999). Measuring symbol and icon characteristics: Norms for concreteness, complexity, meaningfulness, familiarity, and semantic distance for 239 symbols. Behavior Research Methods, Instruments, & Computers, 31, 487–519.

McDougall, S.J.P., de Bruijn, O., & Curry, M.B. (2000). Exploring the effects of icon characteristics on user performance: The role of icon concreteness, complexity, and distinctiveness. Journal of Experimental Psychology: Applied, 6, 291–306.

Moshagen, M., & Thielsch, M.T. (2010). Facets of visual aesthetics. International Journal of Human-Computer Studies, 68, 689–709.

Nadal, M., Munar, E., Marty, G., & Cela-Conde, C.J. (2010). Visual complexity and beauty appreciation: Explaining the divergence of results. Empirical Studies of the Arts, 28, 173–191.

Palmer, S.E. (1999). Vision Science: Photons to Phenomenology. MIT Press. 978-0-262- 16183-1.

Palmer, S.E., Schloss, K.B., & Sammartino, J. (2013). Visual aesthetics and human preference. Annual Review of Psychology, 64, 77–107.

Palumbo, L., Ogden, R., Makin, A.D.J., & Bertamini,M. (2014). Examining visual complexity and its influence on perceived duration. Journal of Vision, 14, 1–18. http://dx.doi.org/ 10.1167/14.14.3.

Parr, M. (1999). Boring postcards. London: Phaidon Press.

Parr, M. (2000). Boring postcards USA. London: Phaidon Press.

Pecchinenda, A., Bertamini, M., Makin, A.D.J., & Ruta, N. (2014). The pleasantness of visual symmetry: Always, never or sometimes. PLoS One, 9, e92685. http://dx.doi.org/10.1371/journal.pone.0092685.

Pieters, R., Wedel, M., & Batra, R. (2010). The stopping power of advertising: Measures and effects of visual complexity. Journal of Marketing, 74, 48–60.

Powers, D. (1998). Applications and explanations of Zipf's law. NeMLaP3/CoNLL '98: Proceedings of the joint conferences on new methods in language processing and computational natural language learning (pp. 151–160). Morristown, NJ, USA: Association for Computational Linguistics.

Reimann, M., Zaichkowsky, J., Neuhaus, C., Bender, T., &Weber, B. (2010). Aesthetic package design: A behavioral, neural, and psychological investigation. Journal of Consumer Psychology, 20, 431–441.

Rosenblatt, F. (Nov 1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408.

Rumelhart, D.E., Hinton, G.E., &Williams, R.J. (1986). Learning internal representations by error propagation. In D.E. Rumelhart, J.L. McClelland, & PDP Research Group (Eds.), Paralled Distributed Processing. Explorations in the Microstructure of Cognition. Foundations, 1. (pp. 318–362). Cambridge, MA: The MIT Press.

Salomon, D. (1997). Data Compression: The Complete Reference. New York, NY, USA: Springer-Verlag New York, Inc.

Simon, H.A. (1972). Complexity and the representation of patterned sequences of symbols. Psychological Review, 79, 369–382.

Snodgrass, J.G. (1997). Picture naming by young children: Norms for name agreement, familiarity, and visual complexity. Journal of Experimental Child Psychology, 65, 171–237.

Sobel, I. (1990). An isotropic 3 × 3 image gradient operator. Machine vision for threedimensional scenes, 376–379.

Spehar, B., Clifford, C.W.G., Newell, B.R., & Taylor, R.P. (2003). Universal aesthetic of fractals. Computers & Graphics, 27, 813–820.

Strother, L., & Kubovy, M. (2003). Perceived complexity and the grouping effect in band patterns. Acta Psychologica, 114, 229–244.

Tatarkiewicz, W. (1972). The great theory of beauty and its decline. The Journal of Aesthetics and Art Criticism, 31, 165–180.

Taylor, R.P., Micholich, A.P., & Jonas, D. (1999). Fractal analysis of Pollock's drip paintings. Nature, 399, 422.

Taylor, R.P., Micholich, A.P., & Jonas, D. (2002). The construction of Jackson Pollock's fractal drip paintings. Leonardo, 35, 203–207.

Thomson, B. (1998). Post-impressionism. London: Tate Gallery Publishing.

Tinio, P.P.L., & Leder, H. (2009). Just how stable are stable aesthetic features? Symmetry, complexity, and the jaws of massive familiarization. Acta Psychologica, 130, 241–250.

van der Helm, P.A. (2004). Transparallel processing by hyperstrings. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 10862–10867.

van der Helm (2014). Simplicity in vision: A multidisciplinary account of perceptual organization. Cambridge University Press.

Winston, A.S., & Cupchik, G.C. (1992). The evaluation of high art and popular art by naive and experienced viewers. Visual Arts Research, 18, 1–14.

Zipf, G.K. (1949). Human Behavior and the Principle of Least Effort. Addison-Wesley.


Links

Full Text

https://www.researchgate.net/publication/279954643_Computerized_measures_of_visual_complexity

internal file


Sonstige Links