Exploration and exploitation in evolutionary algorithms: a survey
Inhaltsverzeichnis
Reference
Crepinšek, M, Liu, S-H (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45: pp. 3
DOI
http://dx.doi.org/10.1145/2480741.2480752
Abstract
“Exploration and exploitation are the two cornerstones of problem solving by search.” For more than a decade, Eiben and Schippers' advocacy for balancing between these two antagonistic cornerstones still greatly influences the research directions of evolutionary algorithms (EAs) [1998]. This article revisits nearly 100 existing works and surveys how such works have answered the advocacy. The article introduces a fresh treatment that classifies and discusses existing work within three rational aspects: (1) what and how EA components contribute to exploration and exploitation; (2) when and how exploration and exploitation are controlled; and (3) how balance between exploration and exploitation is achieved. With a more comprehensive and systematic understanding of exploration and exploitation, more research in this direction may be motivated and refined.
Extended Abstract
Bibtex
@article{Crepinsek:2013:EEE:2480741.2480752, author = {\v{C}repin\v{s}ek, Matej and Liu, Shih-Hsi and Mernik, Marjan}, title = {Exploration and Exploitation in Evolutionary Algorithms: A Survey}, journal = {ACM Comput. Surv.}, issue_date = {June 2013}, volume = {45}, number = {3}, month = jul, year = {2013}, issn = {0360-0300}, pages = {35:1--35:33}, articleno = {35}, numpages = {33}, url = {http://doi.acm.org/10.1145/2480741.2480752, http://de.evo-art.org/index.php?title=Exploration_and_exploitation_in_evolutionary_algorithms:_a_survey }, doi = {10.1145/2480741.2480752}, acmid = {2480752}, publisher = {ACM}, address = {New York, NY, USA}, keywords = {Diversity, evolutionary algorithms, exploration and exploitation}, }
Used References
1 S. F. Adra , P. J. Fleming, Diversity Management in Evolutionary Many-Objective Optimization, IEEE Transactions on Evolutionary Computation, v.15 n.2, p.183-195, April 2011 http://dl.acm.org/citation.cfm?id=2221915&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2010.2058117
2 E. Alba , B. Dorronsoro, The exploration/exploitation tradeoff in dynamic cellular genetic algorithms, IEEE Transactions on Evolutionary Computation, v.9 n.2, p.126-142, April 2005 http://dl.acm.org/citation.cfm?id=2221717&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2005.843751
3 Heni Ben Amor , Achim Rettinger, Intelligent exploration for genetic algorithms: using self-organizing maps in evolutionary computation, Proceedings of the 2005 conference on Genetic and evolutionary computation, June 25-29, 2005, Washington DC, USA http://dl.acm.org/citation.cfm?id=1068250&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1145/1068009.1068250
4 L. Araujo , J. J. Merelo, Diversity Through Multiculturality: Assessing Migrant Choice Policies in an Island Model, IEEE Transactions on Evolutionary Computation, v.15 n.4, p.456-469, August 2011 http://dl.acm.org/citation.cfm?id=2334774&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2010.2064322
5 Bäck, T. 1994. Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. In Proceedings of the 1st Conference on Evolutionary Computing. 57--62.
6 Thomas Bäck, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, Oxford University Press, Oxford, 1996 http://dl.acm.org/citation.cfm?id=229867&CFID=558819604&CFTOKEN=68186175
7 Thomas Bäck , A. E. Eiben , N. A. L. van der Vaart, An Empirical Study on GAs "Without Parameters", Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, p.315-324, September 18-20, 2000 http://dl.acm.org/citation.cfm?id=669092&CFID=558819604&CFTOKEN=68186175
8 Thomas Bäck , Hans-Paul Schwefel, An overview of evolutionary algorithms for parameter optimization, Evolutionary Computation, v.1 n.1, p.1-23, Spring 1993 http://dl.acm.org/citation.cfm?id=1326625&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1162/evco.1993.1.1.1
9 Bartz-Beielstein, T., Lasarczyk, C. W. G., and Preuss, M. 2005. Sequential parameter optimization. In Proceedings of the IEEE Congress on Evolutionary Computation. 773--780.
10 Becerra, R. L. and Coello Coello, C. A. 2006. Cultured differential evolution for constrained optimization. Comput. Methods Appl. Mech. Eng. 195, 33--36, 4303--4322.
11 Bersano-Begey, T. 1997. Controlling exploration, diversity and escaping local optima in GP: Adopting weights of training sets to model resource consumption. In Proceedings of the Late Breaking Papers at the Genetic Programming Conference. 7--10.
12 H. -G. Beyer , K. Deb, On self-adaptive features in real-parameter evolutionary algorithms, IEEE Transactions on Evolutionary Computation, v.5 n.3, p.250-270, June 2001 http://dl.acm.org/citation.cfm?id=2221533&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/4235.930314
13 Mauro Birattari , Thomas Stützle , Luis Paquete , Klaus Varrentrapp, A Racing Algorithm for Configuring Metaheuristics, Proceedings of the Genetic and Evolutionary Computation Conference, p.11-18, July 09-13, 2002 http://dl.acm.org/citation.cfm?id=682291&CFID=558819604&CFTOKEN=68186175
14 Christian Blum , Jakob Puchinger , Günther R. Raidl , Andrea Roli, Hybrid metaheuristics in combinatorial optimization: A survey, Applied Soft Computing, v.11 n.6, p.4135-4151, September, 2011 http://dl.acm.org/citation.cfm?id=1985108&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2011.02.032
15 Christian Blum , Andrea Roli, Metaheuristics in combinatorial optimization: Overview and conceptual comparison, ACM Computing Surveys (CSUR), v.35 n.3, p.268-308, September 2003 http://dl.acm.org/citation.cfm?id=937505&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1145/937503.937505
16 Bogon, T., Poursanidis, G., Lattner, A. D., and Timm, I. J. 2011. Extraction of function features for an automatic configuration of particle swarm optimization. In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence. 51--60.
17 P. A.N. Bosman , D. Thierens, The balance between proximity and diversity in multiobjective evolutionary algorithms, IEEE Transactions on Evolutionary Computation, v.7 n.2, p.174-188, April 2003 http://dl.acm.org/citation.cfm?id=2221635&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2003.810761
18 J. Brest , S. Greiner , B. Boskovic , M. Mernik , V. Zumer, Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems, IEEE Transactions on Evolutionary Computation, v.10 n.6, p.646-657, December 2006 http://dl.acm.org/citation.cfm?id=2221799&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2006.872133
19 E. K. Burke , S. Gustafson , G. Kendall, Diversity in genetic programming: an analysis of measures and correlation with fitness, IEEE Transactions on Evolutionary Computation, v.8 n.1, p.47-62, February 2004 http://dl.acm.org/citation.cfm?id=2221668&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2003.819263
20 Edmund K. Burke , Steven M. Gustafson , Graham Kendall , Natalio Krasnogor, Advanced Population Diversity Measures in Genetic Programming, Proceedings of the 7th International Conference on Parallel Problem Solving from Nature, p.341-350, September 07-11, 2002 http://dl.acm.org/citation.cfm?id=669575&CFID=558819604&CFTOKEN=68186175
21 Patrice Calégari , Giovanni Coray , Alain Hertz , Daniel Kobler , Pierre Kuonen, A Taxonomy of Evolutionary Algorithms in Combinatorial Optimization, Journal of Heuristics, v.5 n.2, p.145-158, July 1999 http://dl.acm.org/citation.cfm?id=595002&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1023/A:1009625526657
22 Nachol Chaiyaratana , Theera Piroonratana , Nuntapon Sangkawelert, Effects of diversity control in single-objective and multi-objective genetic algorithms, Journal of Heuristics, v.13 n.1, p.1-34, February 2007 http://dl.acm.org/citation.cfm?id=1196614&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1007/s10732-006-9003-1
23 Gang Chen , Chor Ping Low , Zhonghua Yang, Preserving and exploiting genetic diversity in evolutionary programming algorithms, IEEE Transactions on Evolutionary Computation, v.13 n.3, p.661-673, June 2009 http://dl.acm.org/citation.cfm?id=1650385&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2008.2011742
24 Chow, C. K. and Yuen, S. Y. 2011. An evolutionary algorithm that makes decision based on the entire previous search history. IEEE Trans. Evol. Comput. 15, 6, 741--769. http://dl.acm.org/citation.cfm?id=657576&CFID=558819604&CFTOKEN=68186175
25 Helen G. Cobb , John J. Grefenstette, Genetic Algorithms for Tracking Changing Environments, Proceedings of the 5th International Conference on Genetic Algorithms, p.523-530, June 01, 1993
26 Matej Crepinsek , Marjan Mernik , Shih-Hsi Liu, Analysis of exploration and exploitation in evolutionary algorithms by ancestry trees, International Journal of Innovative Computing and Applications, v.3 n.1, p.11-19, January 2011 http://dl.acm.org/citation.cfm?id=1924540&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1504/IJICA.2011.037947
27 Dara Curran , Colm O'Riordan, Increasing Population Diversity Through Cultural Learning, Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems, v.14 n.4, p.315-338, December 2006 http://dl.acm.org/citation.cfm?id=1274576&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1177/1059712306072335
28 A. Czarn , C. MacNish , K. Vijayan , B. Turlach , R. Gupta, Statistical exploratory analysis of genetic algorithms, IEEE Transactions on Evolutionary Computation, v.8 n.4, p.405-421, August 2004 http://dl.acm.org/citation.cfm?id=2221693&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2004.831262
29 Darwen, P. J. and Yao, X. 2001. Why more choices cause less cooperation in iterated prisoner's dilemma. In Proceedings of the Congress of Evolutionary Computation. 987--994.
30 De Jong, E. D., Watson, R. A., and Pollack, J. B. 2001. Reducing bloat and promoting diversity using multi-objective methods. In Proceedings of the 3rd Genetic and Evolutionary Computation Conference. 11--18.
31 Kenneth Alan De Jong, An analysis of the behavior of a class of genetic adaptive systems., University of Michigan, Ann Arbor, MI, 1975 http://dl.acm.org/citation.cfm?id=907087&CFID=558819604&CFTOKEN=68186175
32 Kenneth A. DeJong , Kenneth A. De Jong, Evolutionary Computation, The MIT Press, 2002 http://dl.acm.org/citation.cfm?id=1137808&CFID=558819604&CFTOKEN=68186175
33 De Jong, K. A. and Spears, W. 1992. A formal analysis of the role of multi-point crossover in genetic algorithms. Ann. Math. Artif. Intell. 5, 1, 1--26.
34 Kalyanmoy Deb , David E. Goldberg, An Investigation of Niche and Species Formation in Genetic Function Optimization, Proceedings of the 3rd International Conference on Genetic Algorithms, p.42-50, June 01, 1989 http://dl.acm.org/citation.cfm?id=657099&CFID=558819604&CFTOKEN=68186175
35 D'haeseleer, P. and Bluming, J. 1994. Advances in Genetic Programming. MIT Press, Cambridge, MA.
36 Johann Dréo, Using performance fronts for parameter setting of stochastic metaheuristics, Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, July 08-12, 2009, Montreal, Québec, Canada http://dl.acm.org/citation.cfm?id=1570301&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1145/1570256.1570301
37 A. E. Eiben , R. Hinterding , Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Transactions on Evolutionary Computation, v.3 n.2, p.124-141, July 1999 http://dl.acm.org/citation.cfm?id=2221455&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/4235.771166
38 Eiben, A. E., Marchiori, E., and Valko, V. A. 2004. Evolutionary algorithms with on-the-fly population size adjustment. In Proceedings of Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 3242, Springer, 41--50.
39 A.E. Eiben , C.A. Schippers, On Evolutionary Exploration and Exploitation, Fundamenta Informaticae, v.35 n.1-4, p.35-50, January 1998 http://dl.acm.org/citation.cfm?id=2379198&CFID=558819604&CFTOKEN=68186175
40 Eiben, A. E. and Smit, S. K. 2011. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1, 1, 19--31.
41 Agoston E. Eiben , J. E. Smith, Introduction to Evolutionary Computing, Springer Publishing Company, Incorporated, 2010 http://dl.acm.org/citation.cfm?id=1965441&CFID=558819604&CFTOKEN=68186175
42 Eshelman, L. J. 1991. The chc adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. Found. Genetic Algorith. 1, 265--283.
43 Eshelman, L. J. and Schaffer, J. 1991. Preventing premature convergence in genetic algorithms by preventing incest. In Proceedings of the 4th International Conference on Genetic Algorithms. 115--122.
44 J. A. Fernandez-Prieto , J. Canada-Bago , M. A. Gadeo-Martos , Juan R. Velasco, Optimisation of control parameters for genetic algorithms to test computer networks under realistic traffic loads, Applied Soft Computing, v.11 n.4, p.3744-3752, June, 2011 http://dl.acm.org/citation.cfm?id=1970133&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2011.02.004
45 Iztok Fister , Marjan Mernik , Bogdan Filipič, A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry, Applied Soft Computing, v.10 n.2, p.409-422, March, 2010 http://dl.acm.org/citation.cfm?id=1660471&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2009.08.001
46 Terence C. Fogarty, Varying the Probability of Mutation in the Genetic Algorithm, Proceedings of the 3rd International Conference on Genetic Algorithms, p.104-109, June 01, 1989 http://dl.acm.org/citation.cfm?id=657249&CFID=558819604&CFTOKEN=68186175
47 Lawrence J. Fogel, Intelligence through simulated evolution: forty years of evolutionary programming, John Wiley & Sons, Inc., New York, NY, 1999 http://dl.acm.org/citation.cfm?id=317034&CFID=558819604&CFTOKEN=68186175
48 Fonseca, C. M. and Fleming, P. J. 1995. Multiobjective genetic algorithms made easy: Selection, sharing and mating restriction. In Proceedings of the 1st International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications. 45--52.
49 Freisleben, B. and Merz, P. 1996. A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems. In Proceedings of the International Conference on Evolutionary Computation. 616--621.
50 Tobias Friedrich , Nils Hebbinghaus , Frank Neumann, Rigorous analyses of simple diversity mechanisms, Proceedings of the 9th annual conference on Genetic and evolutionary computation, July 07-11, 2007, London, England http://dl.acm.org/citation.cfm?id=1277194&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1145/1276958.1277194
51 Tobias Friedrich , Pietro S. Oliveto , Dirk Sudholt , Carsten Witt, Theoretical analysis of diversity mechanisms for global exploration, Proceedings of the 10th annual conference on Genetic and evolutionary computation, July 12-16, 2008, Atlanta, GA, USA http://dl.acm.org/citation.cfm?id=1389276&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1145/1389095.1389276
52 Edgar Galván-López , James McDermott , Michael O'Neill , Anthony Brabazon, Towards an understanding of locality in genetic programming, Proceedings of the 12th annual conference on Genetic and evolutionary computation, July 07-11, 2010, Portland, Oregon, USA http://dl.acm.org/citation.cfm?id=1830646&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1145/1830483.1830646
53 Hao Gao , Wenbo Xu, Particle swarm algorithm with hybrid mutation strategy, Applied Soft Computing, v.11 n.8, p.5129-5142, December, 2011 http://dl.acm.org/citation.cfm?id=2039518&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2011.05.046
54 Mitsuo Gen , Runwei Cheng, Genetic Algorithms and Manufacturing Systems Design, John Wiley & Sons, Inc., New York, NY, 1996
55 Ghosh, A., Tsutsui, S., and Tanaka, H. 1996. Individual aging in genetic algorithms. In Proceedings of the Australian New Zealand Conference on Intelligent Information Systems. 276--279.
56 Kai Song Goh , Andrew Lim , Brian Rodrigues, Sexual Selection for Genetic Algorithms, Artificial Intelligence Review, v.19 n.2, p.123-152, April 2003 http://dl.acm.org/citation.cfm?id=638211&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1023/A:1022692631328
57 Goldberg, D. E. 2008. Genetic Algorithms in Search, Optimization and Machine Learning. Dorling Kindersley, London.
58 Goldberg, D. E. and Deb, K. 1991. A comparative analysis of selection schemes used in genetic algorithms. In Foundations of Genetic Algorithms. Morgan Kaufmann, Burlington, MA, 69--93.
59 David E. Goldberg , Jon Richardson, Genetic algorithms with sharing for multimodal function optimization, Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, p.41-49, October 1987, Cambridge, Massachusetts, USA http://dl.acm.org/citation.cfm?id=42519&CFID=558819604&CFTOKEN=68186175
60 Gong, W., Cai, Z., and Jiang, L. 2008. Enhancing the performance of differential evolution using orthogonal design method. Appl. Math. Comput. 206, 1, 56--69.
61 Greenwood, G. W., Fogel, G. B., and Ciobanu, M. 1999. Emphasizing extinction in evolutionary programming. In Proceedings of the Congress of Evolutionary Computation. 666--671.
62 J Grefenstette, Optimization of control parameters for genetic algorithms, IEEE Transactions on Systems, Man and Cybernetics, v.16 n.1, p.122-128, Jan./Feb. 1986 http://dl.acm.org/citation.cfm?id=14123&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TSMC.1986.289288
63 Grefenstette, J. J. 1992. Genetic algorithms for changing environments. In Proceedings of Parallel Problem Solving from Nature, Elsevier, Amsterdam, 137--144.
64 Georges R. Harik, Finding Multimodal Solutions Using Restricted Tournament Selection, Proceedings of the 6th International Conference on Genetic Algorithms, p.24-31, July 15-19, 1995 http://dl.acm.org/citation.cfm?id=658086&CFID=558819604&CFTOKEN=68186175
65 Harik, G. R. and Lobo, F. 1999. A parameter-less genetic algorithm. Tech. rep., University of Illinois at Urbana-Champaign, IL.
66 G. R. Harik , F. G. Lobo , D. E. Goldberg, The compact genetic algorithm, IEEE Transactions on Evolutionary Computation, v.3 n.4, p.287-297, November 1999 http://dl.acm.org/citation.cfm?id=2221472&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/4235.797971
67 William Eugene Hart, Adaptive global optimization with local search, University of California at San Diego, La Jolla, CA, 1994 http://dl.acm.org/citation.cfm?id=221524&CFID=558819604&CFTOKEN=68186175
68 Herrera, F. and Lozano, M. 1996. Adaptation of genetic algorithm parameters based on fuzzy logic controllers. Genetic Algorith. Soft Comput. 95--125.
69 Jürgen Hesser , Reinhard Männer, Towards an Optimal Mutation Probability for Genetic Algorithms, Proceedings of the 1st Workshop on Parallel Problem Solving from Nature, p.23-32, October 01-03, 1990 http://dl.acm.org/citation.cfm?id=670199&CFID=558819604&CFTOKEN=68186175
70 Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI.
71 Horn, J., Nafpliotis, N., and Goldberg, D. E. 1994. A niched pareto genetic algorithm for multiobjective optimization. In Proceedings of the 1st IEEE Conference on Evolutionary Computation. 82--87.
72 M. Hutter , S. Legg, Fitness uniform optimization, IEEE Transactions on Evolutionary Computation, v.10 n.5, p.568-589, October 2006 http://dl.acm.org/citation.cfm?id=2221795&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2005.863127
73 Hisao Ishibuchi , Yasuhiro Hitotsuyanagi , Yoshihiko Wakamatsu , Yusuke Nojima, How to choose solutions for local search in multiobjective combinatorial memetic algorithms, Proceedings of the 11th international conference on Parallel problem solving from nature: Part I, September 11-15, 2010, Kraków, Poland http://dl.acm.org/citation.cfm?id=1885087&CFID=558819604&CFTOKEN=68186175
74 Ishibuchi, H., Narukawa, K., Tsukamoto, N., and Nojima, Y. 2008. An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization. Europ. J. Oper. Res. 188, 1, 57--75.
75 Hisao Ishibuchi , Noritaka Tsukamoto , Yusuke Nojima, Diversity improvement by non-geometric binary crossover in evolutionary multiobjective optimization, IEEE Transactions on Evolutionary Computation, v.14 n.6, p.985-998, December 2010 http://dl.acm.org/citation.cfm?id=1922141&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2010.2043365
76 H. Ishibuchi , T. Yoshida , T. Murata, Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling, IEEE Transactions on Evolutionary Computation, v.7 n.2, p.204-223, April 2003 http://dl.acm.org/citation.cfm?id=2221637&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2003.810752
77 Dongli Jia , Guoxin Zheng , Muhammad Khurram Khan, An effective memetic differential evolution algorithm based on chaotic local search, Information Sciences: an International Journal, v.181 n.15, p.3175-3187, August, 2011 http://dl.acm.org/citation.cfm?id=1983038&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.ins.2011.03.018
78 Jin, X. and Reynolds, R. 1999. Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: A cultural algorithm approach. In Proceedings of the Congress on Evolutionary Computation. 1672--1678.
79 R. Joan-Arinyo , M. V. Luzón , E. Yeguas, Parameter tuning of PBIL and CHC evolutionary algorithms applied to solve the Root Identification Problem, Applied Soft Computing, v.11 n.1, p.754-767, January, 2011 http://dl.acm.org/citation.cfm?id=1857712&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2009.12.037
80 L. M. San José-Revuelta, A new adaptive genetic algorithm for fixed channel assignment, Information Sciences: an International Journal, v.177 n.13, p.2655-2678, July, 2007 http://dl.acm.org/citation.cfm?id=1240426&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.ins.2007.01.003
81 T. Kohonen , M. R. Schroeder , T. S. Huang, Self-Organizing Maps, Springer-Verlag New York, Inc., Secaucus, NJ, 2001 http://dl.acm.org/citation.cfm?id=558021&CFID=558819604&CFTOKEN=68186175
82 V. K. Koumousis , C. P. Katsaras, A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance, IEEE Transactions on Evolutionary Computation, v.10 n.1, p.19-28, February 2006 http://dl.acm.org/citation.cfm?id=2221758&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2005.860765
83 John R. Koza, Genetic programming: on the programming of computers by means of natural selection, MIT Press, Cambridge, MA, 1992 http://dl.acm.org/citation.cfm?id=138936&CFID=558819604&CFTOKEN=68186175
84 N. Krasnogor , J. Smith, A tutorial for competent memetic algorithms: model, taxonomy, and design issues, IEEE Transactions on Evolutionary Computation, v.9 n.5, p.474-488, October 2005 http://dl.acm.org/citation.cfm?id=2221738&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2005.850260
85 Thiemo Krink , Peter Rickers , René Thomsen, Applying Self-Organised Criticality to Evolutionary Algorithms, Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, p.375-384, September 18-20, 2000 http://dl.acm.org/citation.cfm?id=758250&CFID=558819604&CFTOKEN=68186175
86 William B. Langdon , Koza John R, Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming!, Kluwer Academic Publishers, Norwell, MA, 1998 http://dl.acm.org/citation.cfm?id=551627&CFID=558819604&CFTOKEN=68186175
87 Joon-Yong Lee , Min-Soeng Kim , Ju-Jang Lee, Compact Genetic Algorithms using belief vectors, Applied Soft Computing, v.11 n.4, p.3385-3401, June, 2011 http://dl.acm.org/citation.cfm?id=1970153&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2011.01.010
88 Yee Leung , Yong Gao , Zong-Ben Xu, Degree of population diversity - a perspective on premature convergence in genetic algorithms and its Markov chain analysis, IEEE Transactions on Neural Networks, v.8 n.5, p.1165-1176, September 1997 http://dl.acm.org/citation.cfm?id=2326155&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/72.623217
89 Yiu-Wing Leung , Yuping Wang, An orthogonal genetic algorithm with quantization for global numerical optimization, IEEE Transactions on Evolutionary Computation, v.5 n.1, p.41-53, February 2001 http://dl.acm.org/citation.cfm?id=2221516&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/4235.910464
90 Jian-Ping Li , Marton E. Balazs , Geoffrey T. Parks , P. John Clarkson, A species conserving genetic algorithm for multimodal function optimization, Evolutionary Computation, v.10 n.3, p.207-234, Fall 2002 http://dl.acm.org/citation.cfm?id=638594&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1162/106365602760234081
91 Li, M., Cai, Z., and Sun, G. 2004. An adaptive genetic algorithm with diversity-guided mutation and its global convergence property. J. Central South Univ. Technol. 11, 3, 323--327.
92 Li, Z. and Wang, X. 2011. Chaotic differential evolution algorithm for solving constrained optimization problems. Inform. Technol. J. 10, 12, 2378--2384.
93 Yong Liang , Kwong-Sak Leung, Genetic Algorithm with adaptive elitist-population strategies for multimodal function optimization, Applied Soft Computing, v.11 n.2, p.2017-2034, March, 2011 http://dl.acm.org/citation.cfm?id=1930642&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2010.06.017
94 T. Warren Liao, Two hybrid differential evolution algorithms for engineering design optimization, Applied Soft Computing, v.10 n.4, p.1188-1199, September, 2010 http://dl.acm.org/citation.cfm?id=1842126&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2010.05.007
95 Jih-Yiing Lin , Ying-Ping Chen, Analysis on the Collaboration Between Global Search and Local Search in Memetic Computation, IEEE Transactions on Evolutionary Computation, v.15 n.5, p.608-623, October 2011 http://dl.acm.org/citation.cfm?id=2334784&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2011.2150754
96 Liu, S.-H., Mernik, M., and Bryant, B. R. 2004. Parameter control in evolutionary algorithms by domain-specific scripting language PPCEA. In Proceedings of the International Conference on Bioinspired Optimization Methods and their Applications. 41--50.
97 Shih-Hsi Liu , Marjan Mernik , Barrett R. Bryant, A clustering entropy-driven approach for exploring and exploiting noisy functions, Proceedings of the 2007 ACM symposium on Applied computing, March 11-15, 2007, Seoul, Korea http://dl.acm.org/citation.cfm?id=1244166&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1145/1244002.1244166
98 Shih-Hsi Liu , Marjan Mernik , Barrett R. Bryant, To explore or to exploit: An entropy-driven approach for evolutionary algorithms, International Journal of Knowledge-based and Intelligent Engineering Systems, v.13 n.3,4, p.185-206, December 2009 http://dl.acm.org/citation.cfm?id=1735211&CFID=558819604&CFTOKEN=68186175
99 Fernando G.. Lobo , Cludio F. Lima , Zbigniew Michalewicz, Parameter Setting in Evolutionary Algorithms, Springer Publishing Company, Incorporated, 2007 http://dl.acm.org/citation.cfm?id=1526026&CFID=558819604&CFTOKEN=68186175
100 Manuel Lozano , Francisco Herrera , José Ramón Cano, Replacement strategies to preserve useful diversity in steady-state genetic algorithms, Information Sciences: an International Journal, v.178 n.23, p.4421-4433, December, 2008 http://dl.acm.org/citation.cfm?id=1435107&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.ins.2008.07.031
101 Luerssen, M. H. 2005. Phenotype diversity objectives for graph grammar evolution. In Recent Advances in Artificial Life, World Scientific Publishing, Singapore, 159--170.
102 Mahfoud, S. W. 1995. Niching methods for genetic algorithms. Tech. rep., University of Illinois at Urbana Champaign, IL.
103 MendAmar Majig , Masao Fukushima, Adaptive Fitness Function for Evolutionary Algorithm and Its Applications, Proceedings of the International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008), p.119-124, January 17-17, 2008 http://dl.acm.org/citation.cfm?id=1345761&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/ICKS.2008.12
104 R. Mallipeddi , P. N. Suganthan , Q. K. Pan , M. F. Tasgetiren, Differential evolution algorithm with ensemble of parameters and mutation strategies, Applied Soft Computing, v.11 n.2, p.1679-1696, March, 2011 http://dl.acm.org/citation.cfm?id=1930676&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2010.04.024
105 Martin, W. N., Lienig, J., and Cohoon, J. P. 1999. Island (Migration) Models: Evolutionary Algorithms based on Punctuated Equilibria (In Handbook of Evolutionary Computation). Oxford University Press.
106 M. Hadi Mashinchi , Mehmet A. Orgun , Witold Pedrycz, Hybrid optimization with improved tabu search, Applied Soft Computing, v.11 n.2, p.1993-2006, March, 2011 http://dl.acm.org/citation.cfm?id=1930640&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2010.06.015
107 Masisi, L., Nelwamondo, V., and Marwala, T. 2008. The use of entropy to measure structural diversity. In Proceedings of the IEEE International Conference on Computational Cybernetics. 41--45.
108 Matsui, K. 1999. New selection method to improve the population diversity in genetic algorithms. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics. 625--630.
109 Claudio Mattiussi , Markus Waibel , Dario Floreano, Measures of Diversity for Populations and Distances Between Individuals with Highly Reorganizable Genomes, Evolutionary Computation, v.12 n.4, p.495-515, December 2004 http://dl.acm.org/citation.cfm?id=1108901&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1162/1063656043138923
110 Mauldin, M. L. 1984. Maintaining diversity in genetic search. In Proceedings of the National Conference on Artificial Intelligence. 247--250.
111 Brian Mc Ginley , John Maher , Colm O'Riordan , Fearghal Morgan, Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection, IEEE Transactions on Evolutionary Computation, v.15 n.5, p.692-714, October 2011 http://dl.acm.org/citation.cfm?id=2334788&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2010.2046173
112 McPhee, N. F. and Hopper, N. J. 1999. Analysis of genetic diversity through population history. In Proceedings of the 1st Genetic and Evolutionary Computation Conference. 1112--1120.
113 Mengshoel, O. J. and Goldberg, D. E. 1999. Probabilistic crowding: Deterministic crowding with probabilisitic replacement. In Proceedings of the Genetic and Evolutionary Computation Conference. 409--416.
114 Marjan Mernik , Jan Heering , Anthony M. Sloane, When and how to develop domain-specific languages, ACM Computing Surveys (CSUR), v.37 n.4, p.316-344, December 2005 http://dl.acm.org/citation.cfm?id=1118892&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1145/1118890.1118892
115 P. Merz , B. Freisleben, Fitness landscape analysis and memetic algorithms for the quadratic assignment problem, IEEE Transactions on Evolutionary Computation, v.4 n.4, p.337-352, November 2000 http://dl.acm.org/citation.cfm?id=2221504&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/4235.887234
116 Zbigniew Michalewicz, Genetic algorithms + data structures = evolution programs (3rd ed.), Springer-Verlag, London, UK, 1996 http://dl.acm.org/citation.cfm?id=229930&CFID=558819604&CFTOKEN=68186175
117 Misevičius, A. 2011. Generation of grey patterns using an improved genetic-evolutionary algorithm: Some new results. Inform. Technol. Control 40, 4, 330--343.
118 Misevičius, A. and Rubliauskas, D. 2008. Enhanced improvement of individuals in genetic algorithms. Inform. Technol. Control 37, 3, 179--186.
119 D. Mongus , B. Repnik , M. Mernik , B. alik, A hybrid evolutionary algorithm for tuning a cloth-simulation model, Applied Soft Computing, v.12 n.1, p.266-273, January, 2012 http://dl.acm.org/citation.cfm?id=2070098&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2011.08.047
120 Elizabeth Montero , María-Cristina Riff, On-the-fly calibrating strategies for evolutionary algorithms, Information Sciences: an International Journal, v.181 n.3, p.552-566, February, 2011 http://dl.acm.org/citation.cfm?id=1889634&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.ins.2010.09.016
121 Alberto Moraglio , Yong-Hyuk Kim , Yourim Yoon , Byung-Ro Moon, Geometric crossovers for multiway graph partitioning, Evolutionary Computation, v.15 n.4, p.445-474, Winter 2007 http://dl.acm.org/citation.cfm?id=1326620&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1162/evco.2007.15.4.445
122 Mori, N., Yoshida, J., Tamaki, H., Kita, H., and Nishikawa, Y. 1995. A thermodynamical selection rule for the genetic algorithm. In Proceedings of the 2nd IEEE International Conference on Evolutionary Computation. 188--192.
123 Pablo Moscato, Memetic algorithms: a short introduction, New ideas in optimization, McGraw-Hill Ltd., UK, Maidenhead, UK, 1999 http://dl.acm.org/citation.cfm?id=329078&CFID=558819604&CFTOKEN=68186175
124 Heinz Mühlenbein , Gerhard Paass, From Recombination of Genes to the Estimation of Distributions I. Binary Parameters, Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, p.178-187, September 22-26, 1996 http://dl.acm.org/citation.cfm?id=670694&CFID=558819604&CFTOKEN=68186175
125 Volker Nannen , A.E. Eiben, A method for parameter calibration and relevance estimation in evolutionary algorithms, Proceedings of the 8th annual conference on Genetic and evolutionary computation, July 08-12, 2006, Seattle, Washington, USA http://dl.acm.org/citation.cfm?id=1144029&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1145/1143997.1144029
126 Quang Huy Nguyen , Yew-Soon Ong , Meng Hiot Lim, A probabilistic memetic framework, IEEE Transactions on Evolutionary Computation, v.13 n.3, p.604-623, June 2009 http://dl.acm.org/citation.cfm?id=1650382&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2008.2009460
127 Ender Özcan , Burak Bilgin , Emin Erkan Korkmaz, A comprehensive analysis of hyper-heuristics, Intelligent Data Analysis, v.12 n.1, p.3-23, January 2008 http://dl.acm.org/citation.cfm?id=1368029&CFID=558819604&CFTOKEN=68186175
128 Yew-Soon Ong , Meng-Hiot Lim , Ning Zhu , Kok-Wai Wong, Classification of adaptive memetic algorithms: a comparative study, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, v.36 n.1, p.141-152, February 2006 http://dl.acm.org/citation.cfm?id=2226490&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TSMCB.2005.856143
129 Oppacher, F. and Wineberg, M. 1999. The shifting balance ga: Improving the ga in dynamic environment. In Proceedings of the 1st Genetic and Evolutionary Computation Conference. 504--510.
130 Ingo Paenke , Yaochu Jin , Jürgen Branke, Balancing Population- and Individual-Level Adaptation in Changing Environments, Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems, v.17 n.2, p.153-174, June 2009 http://dl.acm.org/citation.cfm?id=1517366&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1177/1059712309103566
131 Quan-Ke Pan , P. N. Suganthan , Ling Wang , Liang Gao , R. Mallipeddi, A differential evolution algorithm with self-adapting strategy and control parameters, Computers and Operations Research, v.38 n.1, p.394-408, January, 2011 http://dl.acm.org/citation.cfm?id=1851072&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.cor.2010.06.007
132 Petrowski, A. 1996. A clearing procedure as a niching method for genetic algorithms. In Proceedings of the IEEE International Conference on Evolutionary Computation. 798--803.
133 A. K. Qin , V. L. Huang , P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Transactions on Evolutionary Computation, v.13 n.2, p.398-417, April 2009 http://dl.acm.org/citation.cfm?id=1650368&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2008.927706
134 S. Rahnamayan , H. R. Tizhoosh , M. M.A. Salama, Opposition-Based Differential Evolution, IEEE Transactions on Evolutionary Computation, v.12 n.1, p.64-79, February 2008 http://dl.acm.org/citation.cfm?id=2221855&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2007.894200
135 Connie Loggia Ramsey , John J. Grefenstette, Case-Based Initialization of Genetic Algorithms, Proceedings of the 5th International Conference on Genetic Algorithms, p.84-91, June 01, 1993 http://dl.acm.org/citation.cfm?id=657423&CFID=558819604&CFTOKEN=68186175
136 Edmund M. A. Ronald, When Selection Meets Seduction, Proceedings of the 6th International Conference on Genetic Algorithms, p.167-173, July 15-19, 1995 http://dl.acm.org/citation.cfm?id=657916&CFID=558819604&CFTOKEN=68186175
137 Rosca, J. 1995. Entropy-driven adaptive representation. In Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, 23--32.
138 B. Sareni , L. Krahenbuhl, Fitness sharing and niching methods revisited, IEEE Transactions on Evolutionary Computation, v.2 n.3, p.97-106, September 1998 http://dl.acm.org/citation.cfm?id=2221438&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/4235.735432
139 J. David Schaffer , Rich Caruana , Larry J. Eshelman , Rajarshi Das, A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization, Proceedings of the 3rd International Conference on Genetic Algorithms, p.51-60, June 01, 1989 http://dl.acm.org/citation.cfm?id=657403&CFID=558819604&CFTOKEN=68186175
140 Shimodaira, H. 1997. Dcga: A diversity control oriented genetic algorithm. In Proceedings of the 2nd International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications. 444--449.
141 Gulshan Singh , Kalyanmoy Deb, Dr., Comparison of multi-modal optimization algorithms based on evolutionary algorithms, Proceedings of the 8th annual conference on Genetic and evolutionary computation, July 08-12, 2006, Seattle, Washington, USA http://dl.acm.org/citation.cfm?id=1144200&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1145/1143997.1144200
142 S. K. Smit , A. E. Eiben, Comparing parameter tuning methods for evolutionary algorithms, Proceedings of the Eleventh conference on Congress on Evolutionary Computation, p.399-406, May 18-21, 2009, Trondheim, Norway http://dl.acm.org/citation.cfm?id=1689651&CFID=558819604&CFTOKEN=68186175
143 Smith, J. E. and Fogarty, T. C. 1997. Operator and parameter adaptation in genetic algorithms. Soft Comput. 1, 2, 81--87.
144 Robert E. Smith , Stephanie Forrest , Alan S. Perelson, Searching for diverse, cooperative populations with genetic algorithms, Evolutionary Computation, v.1 n.2, p.127-149, Summer 1993 http://dl.acm.org/citation.cfm?id=1326633&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1162/evco.1993.1.2.127
145 Smith, R. E. and Smuda, E. 1995. Adaptively resizing populations: Algorithm, analysis, and first results. Complex Syst. 9, 47--72.
146 Carlos Soza , Ricardo Landa Becerra , María Cristina Riff , Carlos A. Coello Coello, Solving timetabling problems using a cultural algorithm, Applied Soft Computing, v.11 n.1, p.337-344, January, 2011 http://dl.acm.org/citation.cfm?id=1857704&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2009.11.024
147 Spears, W. M. 1995. Adapting crossover in evolutionary algorithms. In Proceedings of the Evolutionary Programming Conference. 367--384.
148 Srinivas, M. and Patnaik, L. M. 1994. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybernetics 24, 656--667.
149 Storch, T. 2004. On the choice of the population size. In Proceedings of the Genetic and Evolutionary Computation Conference. 748--760.
150 Rainer Storn , Kenneth Price, Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, v.11 n.4, p.341-359, December 1997 http://dl.acm.org/citation.cfm?id=596146&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1023/A:1008202821328
151 E.-G. Talbi, A Taxonomy of Hybrid Metaheuristics, Journal of Heuristics, v.8 n.5, p.541-564, September 2002 http://dl.acm.org/citation.cfm?id=595102&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1023/A:1016540724870
152 Andrea Toffolo , Ernesto Benini, Genetic diversity as an objective in multi-objective evolutionary algorithms, Evolutionary Computation, v.11 n.2, p.151-167, Summer 2003 http://dl.acm.org/citation.cfm?id=942100&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1162/106365603766646816
153 Tsujimura, Y. and Gen, M. 1998. Entropy-based genetic algorithm for solving tsp. In Proceedings of the 2nd International Conference on Knowledge-Based Intelligent Electronic Systems. 285--290.
154 Shigeyoshi Tsutsui , Yoshiji Fujimoto , Ashish Ghosh, Forking genetic algorithms: Gas with search space division schemes, Evolutionary Computation, v.5 n.1, p.61-80, Spring 1997 http://dl.acm.org/citation.cfm?id=1326740&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1162/evco.1997.5.1.61
155 Tsutsui, S., Ghosh, A., Corne, D., and Fujimoto, Y. 1997b. A real coded genetic algorithm with an explorer and an exploiter populations. In Proceedings of the 7th International Conference on Genetic Algorithms. 238--245.
156 Ursem, R. 2000. Multinational GAs: Multimodal optimization techniques in dynamic environments. In Proceedings of the 2nd Genetic and Evolutionary Computation Conference. 19--26.
157 Rasmus K. Ursem, Diversity-Guided Evolutionary Algorithms, Proceedings of the 7th International Conference on Parallel Problem Solving from Nature, p.462-474, September 07-11, 2002 http://dl.acm.org/citation.cfm?id=669270&CFID=558819604&CFTOKEN=68186175
158 Yong Wang , Zixing Cai , Qingfu Zhang, Enhancing the search ability of differential evolution through orthogonal crossover, Information Sciences: an International Journal, v.185 n.1, p.153-177, February, 2012 http://dl.acm.org/citation.cfm?id=2064265&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.ins.2011.09.001
159 Watson, J., Baker, T., Bell, S., Gann, A., Levine, M., and Losick, R. 2004. Molecular Biology of the Gene. Benjamin Cummings, San Francisco, CA.
160 Whitley, D., Mathias, K., and Fitzhorn, P. 1991. Delta coding: An iterative search strategy for genetic algorithms. In Proceedings of the 4th International Conference on Genetic Algorithms. 77--84.
161 Darrell Whitley , Timothy Starkweather, GENITOR II.: a distributed genetic algorithm, Journal of Experimental & Theoretical Artificial Intelligence, v.2 n.3, p.189-214, October 1990 http://dl.acm.org/citation.cfm?id=104926&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1080/09528139008953723
162 Mark Wineberg , Franz Oppacher, Distance between populations, Proceedings of the 2003 international conference on Genetic and evolutionary computation: PartII, July 12-16, 2003, Chicago, IL, USA http://dl.acm.org/citation.cfm?id=1756603&CFID=558819604&CFTOKEN=68186175
163 Wong, Y.-Y., Lee, K.-H., Leung, K.-S., and Ho, C.-W. 2003. A novel approach in parameter adaptation and diversity maintenance for genetic algorithms. Soft Comput. 7, 506--515.
164 Shengxiang Yang, Genetic algorithms with memory-and elitism-based immigrants in dynamic environments, Evolutionary Computation, v.16 n.3, p.385-416, Fall 2008 http://dl.acm.org/citation.cfm?id=1450304&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1162/evco.2008.16.3.385
165 Xin Yao , Yong Liu , Guangming Lin, Evolutionary programming made faster, IEEE Transactions on Evolutionary Computation, v.3 n.2, p.82-102, July 1999 http://dl.acm.org/citation.cfm?id=2221452&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/4235.771163
166 Yin, X. and Germay, N. 1993. A fast genetic algorithm with sharing scheme using cluster analysis method in multi-modal function optimization. In Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. 450--457.
167 E. L. Yu , P. N. Suganthan, Ensemble of niching algorithms, Information Sciences: an International Journal, v.180 n.15, p.2815-2833, August, 2010 http://dl.acm.org/citation.cfm?id=1808717&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.ins.2010.04.008
168 Shiu Yin Yuen , Chi Kin Chow, A genetic algorithm that adaptively mutates and never revisits, IEEE Transactions on Evolutionary Computation, v.13 n.2, p.454-472, April 2009 http://dl.acm.org/citation.cfm?id=1650372&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2008.2003008
169 Jingqiao Zhang , Arthur C. Sanderson, JADE: adaptive differential evolution with optional external archive, IEEE Transactions on Evolutionary Computation, v.13 n.5, p.945-958, October 2009 http://dl.acm.org/citation.cfm?id=1720398&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2009.2014613
170 Zhao Xinchao, Simulated annealing algorithm with adaptive neighborhood, Applied Soft Computing, v.11 n.2, p.1827-1836, March, 2011 http://dl.acm.org/citation.cfm?id=1930597&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1016/j.asoc.2010.05.029
171 Karin Zielinski , Petra Weitkemper , Rainer Laur , Karl-Dirk Kammeyer, Optimization of power allocation for interference cancellation with particle swarm optimization, IEEE Transactions on Evolutionary Computation, v.13 n.1, p.128-150, February 2009 http://dl.acm.org/citation.cfm?id=1650112&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/TEVC.2008.920672
172 Eckart Zitzler , Kalyanmoy Deb , Lothar Thiele, Comparison of Multiobjective Evolutionary Algorithms: Empirical Results, Evolutionary Computation, v.8 n.2, p.173-195, June 2000 http://dl.acm.org/citation.cfm?id=1108876&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1162/106365600568202
173 Zitzler, E., Laumanns, M., and Thiele, L. 2002. Spea2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. Evol. Meth. Design: Optim. Control, 95--100.
174 E. Zitzler , L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation, v.3 n.4, p.257-271, November 1999 http://dl.acm.org/citation.cfm?id=2221470&CFID=558819604&CFTOKEN=68186175 http://dx.doi.org/10.1109/4235.797969
Links
Full Text
http://zimmer.csufresno.edu/~shliu/pub/EE_ACM_FINAL_b.pdf