Fast Visualisation and Interactive Design of Deterministic Fractals

Aus de_evolutionary_art_org
Version vom 8. November 2015, 20:01 Uhr von Gubachelier (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Sven Banisch, Mateu Sbert: Fast Visualisation and Interactive Design of Deterministic Fractals. In: Douglas W. Cunningham, Victoria Interrante, Paul Brown, Jon McCormack (Eds.): Eurographics Workshop on Computational Aesthetics, 2008. 17-24



This paper describes an interactive software tool for the visualisation and the design of artistic fractal images. The software (called AttractOrAnalyst) implements a fast algorithm for the visualisation of basins of attraction of iterated function systems, many of which show fractal properties. It also presents an intuitive technique for fractal shape exploration. Interactive visualisation of fractals allows that parameter changes can be applied at run time. This enables real-time fractal animation. Moreover, an extended analysis of the discrete dynamical systems used to generate the fractal is possible. For a fast exploration of different fractal shapes, a procedure for the automatic generation of bifurcation sets, the generalizations of the Mandelbrot set, is implemented. This technique helps greatly in the design of fractal images. A number of application examples proves the usefulness of the approach, and the paper shows that, put into an interactive context, new applications of these fascinating objects become possible. The images presented show that the developed tool can be very useful for artistic work.

Extended Abstract


author = {Banisch, Sven and Sbert, Mateu},
title = {Fast Visualisation and Interactive Design of Deterministic Fractals},
booktitle = {Proceedings of the Fourth Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging},
series = {Computational Aesthetics'08},
year = {2008},
isbn = {978-3-905674-08-8},
location = {Lisbon, Portugal},
pages = {17--24},
numpages = {8},
url = {, },
doi = {10.2312/COMPAESTH/COMPAESTH08/017-024},
acmid = {2381337},
publisher = {Eurographics Association},
address = {Aire-la-Ville, Switzerland, Switzerland},

Used References

A. J. CRILLY R. A. E., JONES H. (Eds.): Applications of Fractals and Chaos - The Shape of Things, first ed. Springer Verlag, 1993.

Michael Barnsley, Fractals everywhere, Academic Press Professional, Inc., San Diego, CA, 1988

BRONSTEIN I., SEMENDJAJEW K., MUSIOL G., MÜHLIG H.: Taschenbuch der Mathematik. Verlag Harri Deutsch, Frankfurt am Main, Thun, 1997. 3. Ausgabe.

DEVANEY R. L.: An Introduction to Chaotic Dynamical Systems, second ed. Addison-Wesley Publishing Company, 1989.

Robert L. Devaney, Chaos, fractals, and dynamics: computer experiments in mathematics, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1990

Fractal explorer, 2006., (accessed November 17, 2007).

GIFFIN N.: Fractint. Fractint Homepage,, (accessed November 17, 2007).

J. C. VASSILICOS A. D., TATA F.: No Evidence of Chaos But Some Evidence of Multifractals in the Foreign Exchange and the Stock Markets, first ed. Springer Verlag, 1993, pp. 249-265.

JULIA G. M.: Mémoire sur l'itération des fonctions rationnelles, 1918. Memoir on iterations of rational functions, Translated in English by A. Rosa, 2001,

JARRET D., XIAOYAN Z.: The Dynamic Behaviour of Road Traffic Flow: Stability or Chaos?, first ed. Springer Verlag, 1993, pp. 237-248.

LEE P. N.: Fractal links. Fractal Software Programs & Links on Paul N. Lee's website,˜Paul.N.Lee/Fractal_Software.html, (accessed November 17, 2007).

LORENZ E. N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963), 130-141.

Benoit B. Mandelbrot, Fractals and Scaling In Finance: Discontinuity, Concentration, Risk, Springer Publishing Company, Incorporated, 2010

P. Prusinkiewicz , Aristid Lindenmayer, The algorithmic beauty of plants, Springer-Verlag New York, Inc., New York, NY, 1990

SILVERMAN R. A.: Introductary Complex Analysis, first ed. Dover Publications, Inc./ New York, 1972.

Ultra fractal: Advanced fractal animation software, 2007., (accessed November 17, 2007).

ZHAO X.-Q.: Dynamical Systems in Population Biology, first ed. Springer Verlag, 2003.


Full Text

intern file

Sonstige Links