Grammar-based Genetic Programming: A Survey

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche

Reference

McKay, R.I., Nguyen X.H., Whigham, P.A., Shan, Y., Michael O'Neill; (2010) Grammar-based Genetic Programming: A Survey. Genetic Programming and Evolvable Machines, 11 (3).

DOI

http://dx.doi.org/:%2010.1007/s10710-010-9109-y

Abstract

Grammar formalisms are one of the key representation structures in Com- puter Science. So it is not surprising that they have also become important as a method for formalizing constraints in Genetic Programming (GP). Practical grammar-based GP systems first appeared in the mid 1990s, and have subsequently become an impor- tant strand in GP research and applications. We trace their subsequent rise, surveying the various grammar-based formalisms that have been used in GP and discussing the contributions they have made to the progress of GP. We illustrate these contributions with a range of applications of grammar-based GP, showing how grammar formalisms contributed to the solutions of these problems. We briefly discuss the likely future de- velopment of grammar-based GP systems, and conclude with a brief summary of the field.

Extended Abstract

Bibtex

Used References

1. Abbass, H. A., Hoai, N. X., and McKay, R. I. AntTAG: A new method to com- pose computer programs using colonies of ants. In The IEEE Congress on Evolutionary Computation (2002), pp. 1654–1659.

2. abu Dalhoum, A. L., al Zoubi, M., de la Cruz, M., Ortega, A., and Alfonseca, M. A genetic algorithm for solving the p-median problem. In 2005 European Simulation and Modeling Conference (ESM2005) (Oporto, 2005).

3. Baluja, S. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning, tech. report cmu-cs-94-163. Tech. rep., Carnegie Mellon University, 1994.

4. Bohm, W., and Geyer-Schulz, A. Exact uniform initialization for genetic programming. In Foundations of Genetic Algorithms IV (University of San Diego, CA, USA, 3–5 Aug. 1996), R. K. Belew and M. Vose, Eds., Morgan Kaufmann, pp. 379–407.

5. Bosman, P. A. N., and de Jong, E. D. Grammar transformations in an EDA for genetic programming. In Special session: OBUPM - Optimization by Building and Using Probabilistic Models, GECCO (Seattle, Washington, USA, June 2004).

6. Brabazon, A., and O’Neill, M. Biologically Inspired Algorithms for Financial Mod- elling. Natural Computing Series. Springer, 2006.26

7. Bruhn, P., and Geyer-Schulz, A. Genetic programming over context-free languages with linear constraints for the knapsack problem: First results. Evolutionary Computation 10, 1 (Spring 2002), 51–74.

8. Christiansen, H. A survey of adaptable grammars. SIGPLAN Not. 25, 11 (1990), 35–44.

9. Cleary, R., and O’Neill, M. An attribute grammar decoder for the 01 multiconstrained knapsack problem. In Evolutionary Computation in Combinatorial Optimization – Evo- COP 2005 (Lausanne, Switzerland, 30 Mar.-1 Apr. 2005), G. R. Raidl and J. Gottlieb, Eds., vol. 3448 of LNCS, Springer Verlag, pp. 34–45.

10. Costelloe, D., and Ryan, C. Towards models of user preferences in interactive musical evolution. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evo- lutionary computation (London, 7-11 July 2007), D. Thierens, H.-G. Beyer, J. Bongard, J. Branke, J. A. Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr, T. Kovacs, S. Ku- mar, J. F. Miller, J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stutzle, R. A. Watson, and I. Wegener, Eds., vol. 2, ACM Press, pp. 2254–2254.

11. Cramer, N. L. A representation for the adaptive generation of simple sequential pro- grams. In Proceedings of an International Conference on Genetic Algorithms and the Applications (Carnegie-Mellon University, Pittsburgh, PA, USA, 24-26 July 1985), J. J. Grefenstette, Ed., pp. 183–187.

12. Daida, J. M., Li, H., Tang, R., and Hilss, A. M. What makes a problem GP-hard? validating a hypothesis of structural causes. In Genetic and Evolutionary Computation – GECCO-2003 (Chicago, 12-16 July 2003), E. Cant ́ u-Paz, J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller, Eds., vol. 2724 of LNCS, Springer-Verlag, pp. 1665–1677.

13. Dawkins, R. The blind watchmaker. Penguin Harmondsworth, 1991.

14. de la Cruz EcheandA-a, M., de la Puente, A. O., and Alfonseca, M. Attribute grammar evolution. In Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach (2005), vol. 3562 of Lecture Notes in Computer Science, Springer, pp. 182–191.

15. de la Puente, A. O., Alfonso, R. S., and Moreno, M. A. Automatic composition of music by means of grammatical evolution. In Proceedings of the 2002 conference on APL (Madrid, Spain, 2002), ACM Press, pp. 148–155.

16. Dempsey, I., O’Neill, M., and Brabazon, A. Foundations in Grammatical Evolution for Dynamic Environments. Springer, 2009.

17. Ehrig, H., Pfender, M., and Schneider, H. Graph-grammars: an algebraic approach. In In Proceedings of IEEE Conference on Automata and Switching Theory (1973), pp. 167–180.

18. Fontana, W. Algorithmic chemistry. In Artificial Life II (1991), C. Langton, C. Taylor, J. Farmer, and S. Rasmussen, Eds., vol. 2, Addison-Wesley, pp. 159–209.

19. Freeman, J. J. A linear representation for gp using context free grammars. In Proceedings of Genetic Programming 1998 (1998), Morgan Kaufmann, pp. 72–77.

20. Gay-Lussac, J. L. Recherches sur la dilatation des gaz et des vapeurs. Annales de Chimie 63, 137 (1802).

21. Gero, J. Evolutionary learning of novel grammars for design improvement. AIEDAM 8, 2 (1994), 83–94.

22. Geyer-Schulz, A. Fuzzy Rule-based Expert Systems and Genetic Machine Learning, 2 ed., vol. 3 of Studies in Fuzziness. Physica Verlag, Heidelberg, Germany, 1996.

23. Goldberg, D., Korb, B., and Deb, K. Messy genetic algorithms: Motivation, analysis and first results. Complex Systems 3 (1989), 493–530.

24. Gruau, F. Automatic Definition of Modular Neural Networks. Adaptive Behavior 3, 2 (1994), 151–183.

25. Gruau, F. On using syntactic constraints with genetic programming. In Advances in Genetic Programming 2, P. J. Angeline and K. E. Kinnear, Jr., Eds. MIT Press, Cambridge, MA, USA, 1996, ch. 19, pp. 377–394.

26. Harper, R., and Blair, A. A structure preserving crossover in grammatical evolution. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation (Edinburgh, UK, 2-5 Sept. 2005), D. Corne, Z. Michalewicz, M. Dorigo, G. Eiben, D. Fogel, C. Fonseca, G. Greenwood, T. K. Chen, G. Raidl, A. Zalzala, S. Lucas, B. Paechter, J. Willies, J. J. M. Guervos, E. Eberbach, B. McKay, A. Channon, A. Tiwari, L. G. Volkert, D. Ashlock, and M. Schoenauer, Eds., vol. 3, IEEE Press, pp. 2537–2544.27

27. Harper, R., and Blair, A. Dynamically defined functions in grammatical evolution. In Proceedings of the 2006 IEEE Congress on Evolutionary Computation (Vancouver, 6-21 July 2006), IEEE Press, pp. 9188–9188.

28. Hasegawa, Y., and Iba, H. Estimation of distribution algorithm based on probabilistic grammar with latent annotations. Evolutionary Computation, 2007. CEC 2007. IEEE Congress on (25-28 Sept. 2007), 1043–1050.

29. Hemberg, E., Gilligan, C., O’Neill, M., and Brabazon, A. A grammatical genetic programming approach to modularity in genetic programming. In In Proceedings of the Tenth European Conference on Genetic Programming 2007 (Valencia, Spain, 11-13 April 2007), vol. LNCS, Springer.

30. Hemberg, M., and O’Reilly, U.-M. Extending grammatical evolution to evolve digital surfaces with genr8. In Genetic Programming 7th European Conference, EuroGP 2004, Proceedings (Coimbra, Portugal, 5-7 Apr. 2004), M. Keijzer, U.-M. O’Reilly, S. M. Lucas, E. Costa, and T. Soule, Eds., vol. 3003 of LNCS, Springer-Verlag, pp. 299–308.

31. Hemberg, M., OReilly, U.-M., Menges, A., Jonas, K., da Costa Gonalves, M., and Fuchs, S. R. Genr8: Architects’ experience with an emergent design tool. In The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, J. Romero and P. Machado, Eds. Springer Berlin Heidelberg, 2007, pp. 167–188.

32. Hicklin, J. Application of the genetic algorithm to automatic program generation. Mas- ter’s thesis, University of Idaho, Moscow, ID, 1986.

33. Hoai, N. X. Solving the symbolic regression with tree-adjunct grammar guided genetic programming: The preliminary results. In Australasia-Japan Workshop on Intelligent and Evolutionary Systems (University of Otago, Dunedin, New Zealand, 19-21st Nov. 2001), N. Kasabov and P. Whigham, Eds.

34. Hoai, N. X., McKay, R. I. B., and Essam, D. Representation and structural difficulty in genetic programming. IEEE Transactions on Evolutionary Computation 10, 2 (Apr. 2006), 157–166.

35. Holmes, P., and Barclay, P. J. Functional languages on linear chromosomes. In Genetic Programming 1996: Proceedings of the First Annual Conference (Stanford Uni- versity, CA, USA, 28–31 July 1996), J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., MIT Press, p. 427.

36. Hornby, G. S. Functional scalability through generative representations: the evolution of table designs. Environment and Planning B: Planning and Design 31, 4 (July 2004), 569–587

37. Hussain, T. S., and Browse, R. A. Attribute grammars for genetic representations of neural networks and syntactic constraints of genetic programming. In Workshop on Evo- lutionary Computation. Held at the 12 Candadian Conference on Artificial Intelligence (Vancouver, Canada, 17 June 1998).

38. Hussain, T. S., and Browse, R. A. Basic properties of attribute grammar encoding. In Late Breaking Papers at the Genetic Programming 1998 Conference (University of Wis- consin, Madison, Wisconsin, USA, 22-25 July 1998), J. R. Koza, Ed., Stanford University Bookstore.

39. Johnson, C. M., and Feyock, S. A genetics-based technique for the automated ac- quisition of expert system rule bases. In Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs (1991), IEEE Com- puter Society Press, pp. 78–82.

40. Joshi, A., Levy, L., and Takahashi, M. Tree adjunct grammars. J. Comput. Syst. Sci. 10 (1975), 136–163.

41. Karpuzcu, U. R. Automatic verilog code generation through grammatical evolution. In Genetic and Evolutionary Computation Conference (GECCO2005) workshop pro- gram (Washington, D.C., USA, 25-29 June 2005), F. Rothlauf, M. Blowers, J. Branke, S. Cagnoni, I. I. Garibay, O. Garibay, J. Grahl, G. Hornby, E. D. de Jong, T. Kovacs, S. Kumar, C. F. Lima, X. Llor` a, F. Lobo, L. D. Merkle, J. Miller, J. H. Moore, M. O’Neill, M. Pelikan, T. P. Riopka, M. D. Ritchie, K. Sastry, S. L. Smith, H. Stringer, K. Takadama, M. Toussaint, S. C. Upton, and A. H. Wright, Eds., ACM Press, pp. 394–397.

42. Keber, C., and Schuster, M. G. Option valuation with generalized ant programming. In Proceedings of the Genetic and Evolutionary Computation Conference (2002), Morgan Kaufmann Publishers Inc., pp. 74–81.

43. Keijzer, M., and Babovic, V. Dimensionally aware genetic programming. In Pro- ceedings of the Genetic and Evolutionary Computation Conference (Orlando, Florida, USA, 13-17 July 1999), W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, Eds., vol. 2, Morgan Kaufmann, pp. 1069–1076.28

44. Keijzer, M., Babovic, V., Ryan, C., O’Neill, M., and Cattolico, M. Adaptive logic programming. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) (San Francisco, California, USA, 7-11 July 2001), L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds., Morgan Kaufmann, pp. 42–49.

45. Keijzer, M., O’Neill, M., Ryan, C., and Cattolico, M. Grammatical evolution rules: The mod and the bucket rule. In Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002 (Kinsale, Ireland, 3-5 Apr. 2002), J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi, Eds., vol. 2278 of LNCS, Springer-Verlag, pp. 123–130.

46. Keller, R. E., and Banzhaf, W. Genetic programming using genotype-phenotype mapping from linear genomes into linear phenotypes. In Genetic Programming 1996: Proceedings of the First Annual Conference (Stanford University, CA, USA, 28–31 July 1996), J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., MIT Press, pp. 116–122.

47. Koza, J. R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

48. Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge Massachusetts, May 1994.

49. Koza, J. R., Andre, D., Bennett III, F. H., and Keane, M. Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman, Apr. 1999.

50. Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., and Lanza, G. Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, 2003.

51. MacCallum, R. M. Introducing a perl genetic programming system: and can meta- evolution solve the bloat problem? In Genetic Programming, Proceedings of EuroGP’2003 (Essex, 14-16 Apr. 2003), C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, Eds., vol. 2610 of LNCS, Springer-Verlag, pp. 364–373.

52. McConaghy, T., and Gielen, G. Canonical form functions as a simple means for ge- netic programming to evolve human-interpretable functions. In GECCO 2006: Proceed- ings of the 8th annual conference on Genetic and evolutionary computation (Seattle, Washington, USA, 8-12 July 2006), M. Keijzer, M. Cattolico, D. Arnold, V. Babovic, C. Blum, P. Bosman, M. V. Butz, C. Coello Coello, D. Dasgupta, S. G. Ficici, J. Foster, A. Hernandez-Aguirre, G. Hornby, H. Lipson, P. McMinn, J. Moore, G. Raidl, F. Roth- lauf, C. Ryan, and D. Thierens, Eds., vol. 1, ACM Press, pp. 855–862.

53. McGee, R., O’Neill, M., and Brabazon, A. The syntax of stock selection: Gram- matical evolution of a stock picking model. In IEEE World Congress on Computational Intelligence WCCI 2010 (Barcelona, Spain, 2010), IEEE Press.

54. McKay, B. Partial functions in fitness-shared genetic programming. In Proceedings of the 2000 Congress on Evolutionary Computation CEC00 (La Jolla Marriott Hotel La Jolla, California, USA, 6-9 July 2000), IEEE Press, pp. 349–356.

55. McKay, R. I., Hoang, T. H., Essam, D. L., and Nguyen, X. H. Developmental evalua- tion in genetic programming: the preliminary results. In Proceedings of the 9th European Conference on Genetic Programming (Budapest, Hungary, 10 - 12 Apr. 2006), P. Collet, M. Tomassini, M. Ebner, S. Gustafson, and A. Ek ́ art, Eds., vol. 3905 of Lecture Notes in Computer Science, Springer, pp. 280–289.

56. McKay, R. I. B. Variants of genetic programming for species distribution modelling – fitness sharing, partial functions, population evaluation. Ecological Modelling 146, 1-3 (2001), 231–241.

57. McKay, R. I. B., Hoang, T. H., Mori, N., and Nguyen, X H an d Essam, D. L. Model-building with interpolated temporal data. Ecological Informatics 1, 3 (2006), 259–268.

58. Miller, J. F., and Thomson, P. Cartesian genetic programming. In Proceedings of the European Conference on Genetic Programming (London, UK, 2000), Springer-Verlag, pp. 121–132.

59. Montana, D. J. Strongly typed genetic programming. Evolutionary Computation 3, 2 (1995), 199–230.

60. Nguyen, X. H., McKay, R. I. B., Essam, D. L., and Abbass, H. A. Genetic transposi- tion in tree-adjoining grammar guided genetic programming: the relocation operator. In 2004 Asia-Pacific Conference on Simulated Evolution and Learning (October 2004).29

61. Nordin, P., Banzhaf, W., and Francone, F. D. Efficient evolution of machine code for CISC architectures using instruction blocks and homologous crossover. In Advances in Genetic Programming 3, L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline, Eds. MIT Press, Cambridge, MA, USA, June 1999, ch. 12, pp. 275–299.

62. O’Neill, M., and Brabazon, A. mGGA: The meta-grammar genetic algorithm. In Pro- ceedings of the 8th European Conference on Genetic Programming (Lausanne, Switzer- land, 30 Mar. - 1 Apr. 2005), M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert, and M. Tomassini, Eds., vol. 3447 of Lecture Notes in Computer Science, Springer, pp. 311– 320.

63. O’Neill, M., and Brabazon, A. Grammatical differential evolution. In Proceedings of the International Conference on Artificial Intelligence (Las Vegas, NV, USA, 2006), CSEA Press, pp. 231–236.

64. O’Neill, M., and Brabazon, A. Grammatical swarm: The generation of programs by social programming. Natural Computing 5, 4 (2006), 443–462.

65. O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S. M., and Keenan, P. pi grammatical evolution. In Genetic and Evolutionary Computation – GECCO-2004, Part II (Seattle, WA, USA, 26-30 June 2004), K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen, D. Dasgupta, D. Floreano, J. Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector, A. Tettamanzi, D. Thierens, and A. Tyrrell, Eds., vol. 3103 of Lecture Notes in Computer Science, Springer-Verlag, pp. 617–629.

66. O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J., and Brabazon, A. Geva: Grammatical evolution in java. SIGEVOlution 3, 2 (2008), 17–23.

67. O’Neill, M., and Ryan, C. Grammatical evolution. IEEE Transactions on Evolutionary Computation 5, 4 (Aug. 2001), 349–358.

68. O’Neill, M., and Ryan, C. Grammatical Evolution: Evolutionary Automatic Program- ming in a Arbitrary Language, vol. 4 of Genetic programming. Kluwer Academic Pub- lishers, 2003.

69. O’Neill, M., and Ryan, C. Grammatical evolution by grammatical evolution: The evolution of grammar and genetic code. In Genetic Programming 7th European Confer- ence, EuroGP 2004, Proceedings (Coimbra, Portugal, 5-7 Apr. 2004), M. Keijzer, U.-M. O’Reilly, S. M. Lucas, E. Costa, and T. Soule, Eds., vol. 3003 of LNCS, Springer-Verlag, pp. 138–149.

70. O’Neill, M., Ryan, C., Keijzer, M., and Cattolico, M. Crossover in grammatical evolution. Genetic Programming and Evolvable Machines 4, 1 (Mar. 2003), 67–93.

71. O’Neill, M., Swafford, J. M., McDermott, J., Byrne, J., Brabazon, A., Shotton, E., McNally, C., and Hemberg, M. Shape grammars and grammatical evolution for evolutionary design. In GECCO 2009: Genetic and Evolutionary Computation Confer- ence (Montreal, Canada, 2009), ACM.

72. Ortega, A., de la Cruz, M., and Alfonseca, M. Christiansen grammar evolution: Grammatical evolution with semantics. Evolutionary Computation, IEEE Transactions on 11, 1 (Feb. 2007), 77–90.

73. O’Sullivan, J., and Ryan, C. An investigation into the use of different search strategies with grammatical evolution. In Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002 (Kinsale, Ireland, 3-5 Apr. 2002), J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi, Eds., vol. 2278 of LNCS, Springer-Verlag, pp. 268–277.

74. Otero-Rodriguez, J., Garcia-Carbajal, S., and Sanchez-Ramos, L. Fuzzy control applied to a gas transport network in a siderurgycal environment. In 7th International Conference in Information Processing and Management of Uncertainty in Knowledge Based Systems (Paris, 1998), pp. 403–410.

75. Paterson, N., and Livesey, M. Evolving caching algorithms in C by genetic program- ming. In Genetic Programming 1997: Proceedings of the Second Annual Conference (Stanford University, CA, USA, 13-16 July 1997), J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Eds., Morgan Kaufmann, pp. 262–267.

76. Paterson, N. R., and Livesey, M. Distinguishing genotype and phenotype in genetic programming. In Late Breaking Papers at the Genetic Programming 1996 Conference Stanford University July 28-31, 1996 (Stanford University, CA, USA, 28–31 July 1996), J. R. Koza, Ed., Stanford Bookstore, pp. 141–150.

77. Ratle, A., and Sebag, M. Genetic programming and domain knowledge: Beyond the limitations of grammar-guided machine discovery. In Parallel Problem Solving from Na- ture - PPSN VI 6th International Conference (Paris, France, 16-20 Sept. 2000), M. Schoe- nauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, Eds., vol. 1917 of LNCS, Springer Verlag, pp. 211–220.

Ratle, A., and Sebag, M. Avoiding the bloat with probabilistic grammar-guided ge- netic programming. In Artificial Evolution 5th International Conference, Evolution Ar- tificielle, EA 2001 (Creusot, France, Oct. 29-31 2001), P. Collet, C. Fonlupt, J.-K. Hao, E. Lutton, and M. Schoenauer, Eds., vol. 2310 of LNCS, Springer Verlag, pp. 255–266.

Ratle, A., and Sebag, M. Grammar-guided genetic programming and dimensional con- sistency: application to non-parametric identification in mechanics. Applied Soft Com- puting 1, 1 (2001), 105–118.

Ratle, A., and Sebag, M. A novel approach to machine discovery: Genetic program- ming and stochastic grammars. In Proceedings of Twelfth International Conference on Inductive Logic Programming (Sydney, Australia, July 9-11, 2002 2003), S. Matwin and C. Sammut, Eds., vol. 2583 of LNCS, Springer Verlag, pp. 207–222. Ridley, M. Evolution. Blackwell Science, London, 1996.

Rodr ́ıguez-Va ́ zquez, K., and Fleming, P. J. Use of genetic programming in the iden- tification of rational model structures. In Proceedings of the European Conference on Genetic Programming (London, UK, 2000), vol. 1802 of Lecture Notes in Computer Sci- ence, Springer-Verlag, pp. 181–192.

Ross, B. J. Logic-based genetic programming with definite clause translation grammars. New Generation Computing 19, 4 (2001), 313–337.

Rothlauf, F., and Oetzel, M. On the locality of grammatical evolution. Working Paper 11/2005, Department of Business Administration and Information Systems, University of Mannheim, D-68131 Mannheim, Germany, Dec. 2005.

Ryan, C., and Azad, R. M. A. Sensible initialisation in grammatical evolution. In GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolu- tionary Computation Conference (Chigaco, 11 July 2003), A. M. Barry, Ed., AAAI, pp. 142–145. Ryan, C., Nicolau, M., and O’Neill, M. Genetic algorithms using grammatical evo- lution. In Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002 (Kinsale, Ireland, 3-5 Apr. 2002), J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi, Eds., vol. 2278 of LNCS, Springer-Verlag, pp. 278–287.

Ryan, C., O’Neill, M., and Azad, A. No coercion and no prohibition - A position independent encoding scheme for evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) (San Francisco, California, USA, 7-11 July 2001), L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds., Morgan Kaufmann, p. 187.

Shan, Y., Abbass, H., McKay, R. I., and Essam, D. AntTAG: a further study. In Proceedings of the Sixth Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems (Australian National University, Canberra, Australia, 30 Nov. 2002), R. Sarker and B. McKay, Eds.

Shan, Y., McKay, R., Essam, D., and Abbass, H. A survey of probabilistic model build- ing genetic programming. In Scalable Optimization via Probabilistic Modeling, M. Pe- likan, K. Sastry, and E. Cantu-Paz, Eds., vol. 33 of Studies in Computational Intelligence. Springer Verlag, Berlin, Germany, 2006, pp. 121–160.

Shan, Y., McKay, R. I., Abbass, H. A., and Essam, D. Program evolution with explicit learning: a new framework for program automatic synthesis. In Proceedings of the 2003 Congress on Evolutionary Computation CEC2003 (Canberra, 8-12 Dec. 2003), R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, Eds., IEEE Press, pp. 1639–1646.

Shan, Y., McKay, R. I., Baxter, R., Abbass, H., Essam, D., and Hoai, N. X. Gram- mar model-based program evolution. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation (Portland, Oregon, 20-23 June 2004), IEEE Press, pp. 478– 485.

Shan, Y., McKay, R. I., Lokan, C. J., and Essam, D. L. Software project effort estimation using genetic programming. In Proceedings of International Conference on Communications Circuits and Systems (2002).

Shan, Y., Paull, D., and McKay, R. I. Machine learning of poorly predictable ecological data. Ecological Modelling 195, 1-2 (15 May 2006), 129–138. Selected Papers from the Third Conference of the International Society for Ecological Informatics (ISEI), August 26–30, 2002, Grottaferrata, Rome, Italy.31

94. Spector, L., and Stoffel, K. Ontogenetic programming. In Genetic Programming 1996: Proceedings of the First Annual Conference (Stanford University, CA, USA, 28–31 July 1996), J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., MIT Press, pp. 394–399.

95. Tanev, I. Implications of incorporating learning probabilistic context-sensitive grammar in genetic programming on evolvability of adaptive locomotion gaits of snakebot. In Proceedings of GECCO 2004 (eattle, Washington, USA, June 2004). 96. Tanev, I. Genetic programming incorporating biased mutation for evolution and adap- tation of snakebot. Genetic Programming and Evolvable Machines 8, 1 (2007), 39–59.

97. Tanev, I., and Shimohara, K. On role of implicit interaction and explicit communi- cations in emergence of social behavior in continuous predators-prey pursuit problem. In Genetic and Evolutionary Computation – GECCO-2003 (Berlin, 12-16 July 2003), E. Cant ́-Paz, J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Pot- ter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller, Eds., vol. 2724 of LNCS, Springer-Verlag, pp. 74–85.

98. Tsakonas, A., Dounias, G., Doumpos, M., and Zopounidis, C. Bankruptcy prediction with neural logic networks by means of grammar-guided genetic programming. Expert Systems With Applications 30, 3 (Apr. 2006), 449–461. Intelligent Information Systems for Financial Engineering.

99. Tsoulos, I. G., and Lagaris, I. E. Solving differential equations with genetic program- ming. Genetic Programming and Evolvable Machines 7, 1 (Mar. 2006), 33–54.

100. Vanyi, R., and Zvada, S. Avoiding syntactically incorrect individuals via parameterized operators applied on derivation trees. Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on 4 (8-12 Dec. 2003), 2791–2798 Vol.4.

101. Whigham, P., Dick, G., and Recknagel, F. Exploring seasonal patterns using process modelling and evolutionary computation. Ecological Modelling 195, 1-2 (2006), 146–152.

102. Whigham, P. A. Grammatically-based genetic programming. In Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications (Tahoe City, California, USA, 9 July 1995), J. P. Rosca, Ed., pp. 33–41.

103. Whigham, P. A. Inductive bias and genetic programming. In First International Con- ference on Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA (Sheffield, UK, 12-14 Sept. 1995), A. M. S. Zalzala, Ed., vol. 414, IEE, pp. 461– 466.

104. Whigham, P. A. Grammatical Bias for Evolutionary Learning. PhD thesis, School of Computer Science, University College, University of New South Wales, Australian Defence Force Academy, Canberra, Australia, 14 Oct. 1996.

105. Whigham, P. A. Induction of a marsupial density model using genetic programming and spatial relationships. Ecological Modelling 131, 2-3 (2000), 299–317.

106. Whigham, P. A., and Crapper, P. F. Time series modelling using genetic program- ming: An application to rainfall-runoff models. In Advances in Genetic Programming 3, L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline, Eds. MIT Press, Cambridge, MA, USA, June 1999, ch. 5, pp. 89–104.

107. Wong, M. L., and Leung, K. S. Applying logic grammars to induce sub-functions in genetic programming. In 1995 IEEE Conference on Evolutionary Computation (Perth, Australia, 29 Nov. - 1 Dec. 1995), vol. 2, IEEE Press, pp. 737–740.

108. Wong, M. L., and Leung, K. S. Evolutionary program induction directed by logic grammars. Evolutionary Computation 5, 2 (summer 1997), 143–180.

109. Wong, M. L., and Leung, K. S. Data Mining Using Grammar Based Genetic Program- ming and Applications, vol. 3 of Genetic Programming. Kluwer Academic Publishers, Jan. 2000.

110. Zvada, S., and Vanyi, R. Improving grammer based evolution algorithms via attributed derivation trees. In Genetic Programming 7th European Conference, EuroGP 2004, Proceedings (Coimbra, Portugal, 5-7 Apr. 2004), M. Keijzer, U.-M. O’Reilly, S. M. Lucas, E. Costa, and T. Soule, Eds., vol. 3003 of LNCS, Springer-Verlag, pp. 208–219.


Links

Full Text

http://ncra.ucd.ie/papers/grammarbasedGPaSurvey2010.pdf

intern file

Sonstige Links