Higher-order Mandelbrot fractals: experiments in nanogeometry
Inhaltsverzeichnis
Reference
Dickerson, R.: Higher-order Mandelbrot fractals: experiments in nanogeometry (2003).
DOI
Abstract
Extended Abstract
Bibtex
Used References
1. B. B. Mandelbrot (1977). Fractals: Form, Chance and Dimension. Freeman, San Francisco.
2. R. Brooks & J. P. Matelski (1980). “The Dynamics of 2–Generator Subgroups of PSL(2,C)”. In: Riemann Surfaces and RelatedTopics: Proceedings of the 1978 Stony Brook Conference (I. Kra & B. Maskit, eds.), Princeton University Press 1981.
3. B. B. Mandelbrot (1980). "Fractal Aspects of the Iteration of z —> λ (1–z) for complex λ, z." Ann. N.Y. Acad. Sciences 357, 249–259.
4. A. Douady & J. H. Hubbard (1982). “Itération des Polynômes Quadratiques Complexes”. C. R. Acad. Sci. Paris Sér. I Math. 294, no. 3, 123–126.
5. B. B. Mandelbrot (1983). The Fractal Geometry of Nature. W. H. Freeman, New York.
6. H.–O. Peitgen & P. H. Richter (1986). The Beauty of Fractals. Springer–Verlag, Berlin.
7. H.–O. Peitgen & D. Saupe, Eds. (1988). The Science of Fractal Images. Springer– Verlag, Berlin
8. H.–O. Peitgen, H. Jürgens & D. Saupe (1992). Chaos and Fractals: New Frontiers of Science. Springer–Verlag, Berlin
Links
Full Text
http://www.fractal.org/Bewustzijns-Besturings-Model/Higher-order-Mandelbrot-Fractals.pdf
Sonstige Links
http://classes.yale.edu/fractals/Mandelset/MandelDef/HigherMandels/HigherMandels.html