Metamorphosis in Escher’s Art

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Craig S. Kaplan: Metamorphosis in Escher’s Art. In: Bridges 2008. Pages 39–46



M.C. Escher returned often to the themes of metamorphosis and deformation in his art, using a small set of pictorial devices to express this theme. I classify Escher’s various approaches to metamorphosis, and relate them to the works in which they appear. I also discuss the mathematical challenges that arise in attempting to formalize one of these devices so that it can be applied reliably.

Extended Abstract


Used References

[1] F. H. Bool, J. R. Kist, J. L. Locher, and F. Wierda. M. C. Escher: His Life and Complete Graphic Work. Harry N. Abrams, Inc., 1992.

[2] Bart de Smit and Henrik W. Lenstra. The mathematical structure of Escher’s Print Gallery. Notices of the American Mathematical Society, 50(4):446–451, 2003.

[3] Douglas J. Dunham. Creating hyperbolic escher patterns. In H. S. M. Coxeter et al., editor, M.C. Es- cher: Art and Science, pages 241–247. Elsevier Science Publishers B.V., 1986.

[4] Bruno Ernst. The Magic Mirror of M. C. Escher. Ballantine Books, New York, 1976.

[5] M. C. Escher. Escher on Escher: Exploring the Infinite. Henry N. Abrams, Inc., 1989. Translated by Karin Ford.

[6] Branko Gr ̈unbaum and G. C. Shephard. Tilings and Patterns. W. H. Freeman, 1987.

[7] Douglas Hofstadter. Metamagical Themas: Questing for the Essence of Mind and Pattern. Bantam Books, 1986.

[8] Craig S. Kaplan and David H. Salesin. Escherization. In Proceedings of the 27th annual confer- ence on Computer graphics and interactive techniques (SIGGRAPH 2000), pages 499–510. ACM Press/Addison-Wesley Publishing Co., 2000.

[9] Craig S. Kaplan and David H. Salesin. Dihedral Escherization. In GI ’04: Proceedings of the 2004 conference on Graphics interface, pages 255–262. Canadian Human-Computer Communications So- ciety, 2004.

[10] J. F. Rigby. Butterflies and snakes. In H. S. M. Coxeter et al., editor, M.C. Escher: Art and Science, pages 211–220. Elsevier Science Publishers B.V., 1986.

[11] Doris Schattschneider. M.C. Escher: Visions of Symmetry. Harry N. Abrams, second edition, 2004.

[12] Thomas W. Sederberg, Peisheng Gao, Guojin Wang, and Hong Mu. 2D shape blending: An intrinsic solution to the vertex path problem. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 15–18, aug 1993.

[13] Jane Yen and Carlo S ́equin. Escher sphere construction kit. In Proceedings of the 2001 symposium on Interactive 3D graphics, pages 95–98. ACM Press, 2001.


Full Text

intern file

Sonstige Links