The Evolution of Fun: Automatic Level Design Through Challenge Modeling

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Reference

Nathan Sorenson, Philippe Pasquier: The Evolution of Fun: Automatic Level Design Through Challenge Modeling. In: Computational Creativity 2010 ICCC 2010. 258-267.

DOI

Abstract

A generative system that creates levels for 2D platformer games is presented. The creation process is driven by generic models of challenge-based fun which are derived from existing theories of game design. These models are used as fitness functions in a genetic algorithm to produce new levels that maxi- mize the amount of player fun, and the results are compared with existing levels from the classic video game Super Mario Bros. This technique is novel among systems for creating video game content as it does not follow a complex rule- based approach but instead generates output from simple and generic high-level descriptions of player enjoyment.

Extended Abstract

Bibtex

@inproceedings{
author = {Nathan Sorenson, Philippe Pasquier},
title = {The Evolution of Fun: Automatic Level Design Through Challenge Modeling},
editor = {Dan Ventura, Alison Pease, Rafael P ́erez y P ́erez, Graeme Ritchie and Tony Veale},
booktitle = {Proceedings of the First International Conference on Computational Creativity},
series = {ICCC2010},
year = {2010},
month = {January},
location = {Lisbon, Portugal},
pages = {258-267},
url = {http://computationalcreativity.net/iccc2010/papers/sorenson-pasquier.pdf, http://de.evo-art.org/index.php?title=The_Evolution_of_Fun:_Automatic_Level_Design_Through_Challenge_Modeling },
publisher = {International Association for Computational Creativity},
keywords = {computational, creativity},
}

Used References

The NetHack DevTeam: Nethack. (2009) http://www.nethack.org/.

Meier, S.: Civilization. MicroProse (1991)

Matsuura, M.: Vib-Ribbon. Sony Computer Entertainment (1999)

Remo, C.: MIGS: Far Cry 2’s Guay on the importance of procedural content. Gamasutra (2008) http://www.gamasutra.com/php-bin/news index.php?story=21165.

5. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper Perennial (1991)

6. Smith, G., Cha, M., Whitehead, J.: A framework for analysis of 2d platformer levels. In: Sandbox ’08: Proceedings of the 2008 ACM SIGGRAPH symposium on Video games, New York, NY, USA, ACM (2008) 75–80

7. Byrne, W., Schnier, T., Hendley, R.J.: Computational intelligence and case-based creativity in design. In: Proceedings of the International Joint Workshop on Computational Creativity 2008, Madrid, Spain (2008) 31–40

8. Sims, K.: Artificial evolution for computer graphics. In: SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer graphics and interactive techniques. Volume 25., ACM Press (1991) 319–328

9. Dipaola, S., Gabora, L.: Incorporating characteristics of human creativity into an evolution- ary art algorithm. Genetic Programming and Evolvable Machines 10(2) (2009) 97–110

10. Kicinger, R., Arciszewski, T., Jong, K.D.: Evolutionary computation and structural design: A survey of the state-of-the-art. Computers & Structures 83(23-24) (2005) 1943–1978

11. Jorge, P.M., Tavares, J., Cardoso, A., Pereira, F.B., Costa, E.: Evolving creativity. In: Com- putational Creativity Workshop, 7th European Conference in Case Based Reasoning, Berlin, Germany, Springer (2004) 91–102

12. Boden, M.: The Creative Mind; Myths and Mechanisms. Routledge (2003)

13. Browne, C.: Automatic generation and evaluation of recombination games. PhD in computer science, Queensland University of Technology, Brisbane, Australia (2008)

14. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: IEEE Sympo- sium on Computational Intelligence and Games. (2008) 111–118

15. Smith, G., Treanor, M., Whitehead, J., Mateas, M.: Rhythm-based level generation for 2d platformers. In: FDG ’09: Proceedings of the 4th International Conference on Foundations of Digital Games, New York, NY, USA, ACM (2009) 175–182

16. Hunicke, R., LeBlanc, M., Zubek, R.: MDA: A formal approach to game design and game re- search. In: Challenges in Game AI Workshop, Nineteenth National Conference on Artificial Intelligence. (2004) 1–5

17. Apter, M.J.: A structural-phenomenology of play. In Kerr, J.H., Apter, M.J., eds.: Adult Play: A Reversal Theory Approach. Swets and Zeitlinger, Amsterdam (1991) 18–20

18. Malone, T.W.: What makes things fun to learn? heuristics for designing instructional com- puter games. In: SIGSMALL ’80: Proceedings of the 3rd ACM SIGSMALL symposium and the first SIGPC symposium on Small systems, New York, NY, USA, ACM Press (1980) 162–169

19. Garneau, P.A.: Fourteen forms of fun. Gamasutra. October 12 (2001)

20. Sweetser, P., Wyeth, P.: Gameflow: a model for evaluating player enjoyment in games. Com- put. Entertain. 3(3) (2005) 3

21. Koster, R.: Theory of Fun for Game Design. Paraglyph Press (2004)

22. Salen, K., Zimmerman, E.: Rules of Play : Game Design Fundamentals. The MIT Press (2003)

23. Miyamoto, S.: Donkey Kong. Nintendo (1981)

24. Miyamoto, S., Yamauchi, H., Tezuka, T.: Super Mario Bros. Nintendo (1987)

25. Wolf, M.J.P.: The Medium of the Video Game. University of Texas Press (2002)

26. Compton, K., Mateas, M.: Procedural level design for platform games. In: 2nd Artificial Intelligence and Interactive Digital Entertainment Conference. (2006) 109–111

27. Juul, J.: Fear of failing? the many meanings of difficulty in video games. In Yao, X., Burke, E., Lozano, J.A., Smith, J., Merelo-Guervs, J.J., Bullinaria, J.A., Rowe, J., Tino, P., Kabn, A., Schwefel, H.P., eds.: The Video Game Theory Reader 2. Routledge, New York (2009) 237–252

28. Falstein, N.: Understanding fun–the theory of natural funativity. In Rabin, S., ed.: Introduc- tion to Game Development. Charles River Media, Boston (2005) 71–98


Links

Full Text

http://computationalcreativity.net/iccc2010/papers/sorenson-pasquier.pdf

intern file

Sonstige Links