Bridges 2014: Unterschied zwischen den Versionen

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche
(Table of contents)
Zeile 19: Zeile 19:
 
* Thomas F. Banchoff: Salvador Dalí and the Fourth Dimension. Pages 1–10 http://archive.bridgesmathart.org/2014/bridges2014-1.html http://archive.bridgesmathart.org/2014/bridges2014-1.pdf
 
* Thomas F. Banchoff: Salvador Dalí and the Fourth Dimension. Pages 1–10 http://archive.bridgesmathart.org/2014/bridges2014-1.html http://archive.bridgesmathart.org/2014/bridges2014-1.pdf
  
* Frank Morgan: Bubbles and Tilings: Art and Mathematics. Pages 11–18 http://archive.bridgesmathart.org/2014/bridges2014-11.html http://archive.bridgesmathart.org/2014/bridges2014-11.pdf
+
* Frank Morgan: [[Bubbles and Tilings: Art and Mathematics]]. Pages 11–18 http://archive.bridgesmathart.org/2014/bridges2014-11.html http://archive.bridgesmathart.org/2014/bridges2014-11.pdf
  
 
* Hinke M. Osinga and Bernd Krauskopf: How to Crochet a Space-Filling Pancake: the Math, the Art and What Next. Pages 19–26 http://archive.bridgesmathart.org/2014/bridges2014-19.html http://archive.bridgesmathart.org/2014/bridges2014-19.pdf
 
* Hinke M. Osinga and Bernd Krauskopf: How to Crochet a Space-Filling Pancake: the Math, the Art and What Next. Pages 19–26 http://archive.bridgesmathart.org/2014/bridges2014-19.html http://archive.bridgesmathart.org/2014/bridges2014-19.pdf
Zeile 25: Zeile 25:
 
* Abdalla G. M. Ahmed: Modular Duotone Weaving Design. Pages 27–34 http://archive.bridgesmathart.org/2014/bridges2014-27.html http://archive.bridgesmathart.org/2014/bridges2014-27.pdf
 
* Abdalla G. M. Ahmed: Modular Duotone Weaving Design. Pages 27–34 http://archive.bridgesmathart.org/2014/bridges2014-27.html http://archive.bridgesmathart.org/2014/bridges2014-27.pdf
  
* B. Lynn Bodner: The Planar Space Groups of Mamluk Patterns. Pages 35–42 http://archive.bridgesmathart.org/2014/bridges2014-35.html http://archive.bridgesmathart.org/2014/bridges2014-35.pdf
+
* B. Lynn Bodner: [[The Planar Space Groups of Mamluk Patterns]]. Pages 35–42 http://archive.bridgesmathart.org/2014/bridges2014-35.html http://archive.bridgesmathart.org/2014/bridges2014-35.pdf
  
 
* Peter Boothe and Jonathan Langke: People and Computers Agree on the Complexity of Small Art. Pages 43–50 http://archive.bridgesmathart.org/2014/bridges2014-43.html http://archive.bridgesmathart.org/2014/bridges2014-43.pdf  
 
* Peter Boothe and Jonathan Langke: People and Computers Agree on the Complexity of Small Art. Pages 43–50 http://archive.bridgesmathart.org/2014/bridges2014-43.html http://archive.bridgesmathart.org/2014/bridges2014-43.pdf  
Zeile 37: Zeile 37:
 
* Kelly Delp: Stripey Squares. Pages 73–78 http://archive.bridgesmathart.org/2014/bridges2014-73.html http://archive.bridgesmathart.org/2014/bridges2014-73.pdf
 
* Kelly Delp: Stripey Squares. Pages 73–78 http://archive.bridgesmathart.org/2014/bridges2014-73.html http://archive.bridgesmathart.org/2014/bridges2014-73.pdf
  
* Douglas Dunham and John Shier: The Art of Random Fractals. Pages 79–86 http://archive.bridgesmathart.org/2014/bridges2014-79.html http://archive.bridgesmathart.org/2014/bridges2014-79.pdf
+
* Douglas Dunham and John Shier: [[The Art of Random Fractals]]. Pages 79–86 http://archive.bridgesmathart.org/2014/bridges2014-79.html http://archive.bridgesmathart.org/2014/bridges2014-79.pdf
  
* Robert W. Fathauer: Some Hyperbolic Fractal Tilings. Pages 87–94 http://archive.bridgesmathart.org/2014/bridges2014-87.html http://archive.bridgesmathart.org/2014/bridges2014-87.pdf
+
* Robert W. Fathauer: [[Some Hyperbolic Fractal Tilings]]. Pages 87–94 http://archive.bridgesmathart.org/2014/bridges2014-87.html http://archive.bridgesmathart.org/2014/bridges2014-87.pdf
  
 
* Kristóf Fenyvesi, Natalija Budinski and Zsolt Lavicza: Two Solutions to An Unsolvable Problem: Connecting Origami and GeoGebra in A Serbian High School: Pages 95–102 http://archive.bridgesmathart.org/2014/bridges2014-95.html http://archive.bridgesmathart.org/2014/bridges2014-95.pdf
 
* Kristóf Fenyvesi, Natalija Budinski and Zsolt Lavicza: Two Solutions to An Unsolvable Problem: Connecting Origami and GeoGebra in A Serbian High School: Pages 95–102 http://archive.bridgesmathart.org/2014/bridges2014-95.html http://archive.bridgesmathart.org/2014/bridges2014-95.pdf
Zeile 49: Zeile 49:
 
* Francisco Gómez, Jose Miguel Díaz-Báñez, Emilia Gómez and Joaquin Mora: Flamenco music and its Computational Study. Pages 119–126 http://archive.bridgesmathart.org/2014/bridges2014-119.html http://archive.bridgesmathart.org/2014/bridges2014-119.pdf  
 
* Francisco Gómez, Jose Miguel Díaz-Báñez, Emilia Gómez and Joaquin Mora: Flamenco music and its Computational Study. Pages 119–126 http://archive.bridgesmathart.org/2014/bridges2014-119.html http://archive.bridgesmathart.org/2014/bridges2014-119.pdf  
  
* Paul Gailiunas: Recursive Rosettes. Pages 127–134 http://archive.bridgesmathart.org/2014/bridges2014-127.html http://archive.bridgesmathart.org/2014/bridges2014-127.pdf
+
* Paul Gailiunas: [[Recursive Rosettes]]. Pages 127–134 http://archive.bridgesmathart.org/2014/bridges2014-127.html http://archive.bridgesmathart.org/2014/bridges2014-127.pdf
  
 
* George Hart: Geometry Ascending a Staircase. Pages 135–142 http://archive.bridgesmathart.org/2014/bridges2014-135.html http://archive.bridgesmathart.org/2014/bridges2014-135.pdf
 
* George Hart: Geometry Ascending a Staircase. Pages 135–142 http://archive.bridgesmathart.org/2014/bridges2014-135.html http://archive.bridgesmathart.org/2014/bridges2014-135.pdf
  
* Vi Hart and Henry Segerman: The quaternion group as a symmetry group. Pages 143–150 http://archive.bridgesmathart.org/2014/bridges2014-143.html http://archive.bridgesmathart.org/2014/bridges2014-143.pdf  
+
* Vi Hart and Henry Segerman: [[The quaternion group as a symmetry group]]. Pages 143–150 http://archive.bridgesmathart.org/2014/bridges2014-143.html http://archive.bridgesmathart.org/2014/bridges2014-143.pdf  
  
* Dirk Huylebrouck: The Meta-golden Ratio Chi. Pages 151–158 http://archive.bridgesmathart.org/2014/bridges2014-151.html http://archive.bridgesmathart.org/2014/bridges2014-151.pdf
+
* Dirk Huylebrouck: [[The Meta-golden Ratio Chi]]. Pages 151–158 http://archive.bridgesmathart.org/2014/bridges2014-151.html http://archive.bridgesmathart.org/2014/bridges2014-151.pdf
  
* Tiffany Inglis: Constructing Drawings of Impossible Figures with Axonometric Blocks and Pseudo-3D Manipulations. Pages 159–166 http://archive.bridgesmathart.org/2014/bridges2014-159.html http://archive.bridgesmathart.org/2014/bridges2014-159.pdf  
+
* Tiffany Inglis: [[Constructing Drawings of Impossible Figures with Axonometric Blocks and Pseudo-3D Manipulations]]. Pages 159–166 http://archive.bridgesmathart.org/2014/bridges2014-159.html http://archive.bridgesmathart.org/2014/bridges2014-159.pdf  
  
 
* Craig S. Kaplan: The Design of a Reconfigurable Maze. Pages 167–174 http://archive.bridgesmathart.org/2014/bridges2014-167.html http://archive.bridgesmathart.org/2014/bridges2014-167.pdf
 
* Craig S. Kaplan: The Design of a Reconfigurable Maze. Pages 167–174 http://archive.bridgesmathart.org/2014/bridges2014-167.html http://archive.bridgesmathart.org/2014/bridges2014-167.pdf
  
*Mahsa Kharazmi and Reza Sarhangi: Geometric Study of Architectural Designs on a Twelfth Century Structure. Pages 175–182 http://archive.bridgesmathart.org/2014/bridges2014-175.html http://archive.bridgesmathart.org/2014/bridges2014-175.pdf
+
*Mahsa Kharazmi and Reza Sarhangi: [[Geometric Study of Architectural Designs on a Twelfth Century Structure]]. Pages 175–182 http://archive.bridgesmathart.org/2014/bridges2014-175.html http://archive.bridgesmathart.org/2014/bridges2014-175.pdf
  
* Glenn R. Laigo, Haftamu Menker GebreYohannes and Fahad Mohammed Humaid Al Khamisi: Symmetry Groups of Islamic Patterns at the Sultan Qaboos Grand Mosque. Pages 183–190 http://archive.bridgesmathart.org/2014/bridges2014-183.html http://archive.bridgesmathart.org/2014/bridges2014-183.pdf
+
* Glenn R. Laigo, Haftamu Menker GebreYohannes and Fahad Mohammed Humaid Al Khamisi: [[Symmetry Groups of Islamic Patterns at the Sultan Qaboos Grand Mosque]]. Pages 183–190 http://archive.bridgesmathart.org/2014/bridges2014-183.html http://archive.bridgesmathart.org/2014/bridges2014-183.pdf
  
 
* Taneli Luotoniemi: The Kinochoron: A Manipulable Wire Model of the 16-cell. Pages 191–196 http://archive.bridgesmathart.org/2014/bridges2014-191.html http://archive.bridgesmathart.org/2014/bridges2014-191.pdf
 
* Taneli Luotoniemi: The Kinochoron: A Manipulable Wire Model of the 16-cell. Pages 191–196 http://archive.bridgesmathart.org/2014/bridges2014-191.html http://archive.bridgesmathart.org/2014/bridges2014-191.pdf
Zeile 77: Zeile 77:
 
* Faniry Razafindrazaka and Konrad Polthier: Regular Surfaces and Regular Maps. Pages 225–234 http://archive.bridgesmathart.org/2014/bridges2014-225.html http://archive.bridgesmathart.org/2014/bridges2014-225.pdf
 
* Faniry Razafindrazaka and Konrad Polthier: Regular Surfaces and Regular Maps. Pages 225–234 http://archive.bridgesmathart.org/2014/bridges2014-225.html http://archive.bridgesmathart.org/2014/bridges2014-225.pdf
  
* Rinus Roelofs: Elevations and Stellations. Pages 235–242 http://archive.bridgesmathart.org/2014/bridges2014-235.html http://archive.bridgesmathart.org/2014/bridges2014-235.pdf  
+
* Rinus Roelofs: [[Elevations and Stellations]]. Pages 235–242 http://archive.bridgesmathart.org/2014/bridges2014-235.html http://archive.bridgesmathart.org/2014/bridges2014-235.pdf  
  
* Reza Sarhangi: Decorating Regular Polyhedra Using Historical Interlocking Star Polygonal Patterns — A Mathematics and Art Case Study. Pages 243–252 http://archive.bridgesmathart.org/2014/bridges2014-243.html http://archive.bridgesmathart.org/2014/bridges2014-243.pdf  
+
* Reza Sarhangi: [[Decorating Regular Polyhedra Using Historical Interlocking Star Polygonal Patterns — A Mathematics and Art Case Study]]. Pages 243–252 http://archive.bridgesmathart.org/2014/bridges2014-243.html http://archive.bridgesmathart.org/2014/bridges2014-243.pdf  
  
 
* Karl Schaffer: Dancing Deformations. Pages 253–260 http://archive.bridgesmathart.org/2014/bridges2014-253.html http://archive.bridgesmathart.org/2014/bridges2014-253.pdf  
 
* Karl Schaffer: Dancing Deformations. Pages 253–260 http://archive.bridgesmathart.org/2014/bridges2014-253.html http://archive.bridgesmathart.org/2014/bridges2014-253.pdf  
Zeile 87: Zeile 87:
 
* Donald Spector: Three Mathematical Views of In C. Pages 271–278 http://archive.bridgesmathart.org/2014/bridges2014-271.html http://archive.bridgesmathart.org/2014/bridges2014-271.pdf
 
* Donald Spector: Three Mathematical Views of In C. Pages 271–278 http://archive.bridgesmathart.org/2014/bridges2014-271.html http://archive.bridgesmathart.org/2014/bridges2014-271.pdf
  
* Stanley Spencer: Creating Self Similar Tiling Patterns and Fractals using the Geometric Factors of a Regular Polygon. Pages 279–284 http://archive.bridgesmathart.org/2014/bridges2014-279.html http://archive.bridgesmathart.org/2014/bridges2014-279.pdf
+
* Stanley Spencer: [[Creating Self Similar Tiling Patterns and Fractals using the Geometric Factors of a Regular Polygon]]. Pages 279–284 http://archive.bridgesmathart.org/2014/bridges2014-279.html http://archive.bridgesmathart.org/2014/bridges2014-279.pdf
  
 
* Melle Stoel: closed loops with antiprisms. Pages 285–292 http://archive.bridgesmathart.org/2014/bridges2014-285.html http://archive.bridgesmathart.org/2014/bridges2014-285.pdf
 
* Melle Stoel: closed loops with antiprisms. Pages 285–292 http://archive.bridgesmathart.org/2014/bridges2014-285.html http://archive.bridgesmathart.org/2014/bridges2014-285.pdf
  
* Eva R. Toussaint and Godfried T. Toussaint: What is a Pattern? Pages 293–300 http://archive.bridgesmathart.org/2014/bridges2014-293.html http://archive.bridgesmathart.org/2014/bridges2014-293.pdf
+
* Eva R. Toussaint and Godfried T. Toussaint: [[What is a Pattern?]] Pages 293–300 http://archive.bridgesmathart.org/2014/bridges2014-293.html http://archive.bridgesmathart.org/2014/bridges2014-293.pdf
  
 
* Harri Varpanen: Toss and Spin Juggling State Graphs. Pages 301–308 http://archive.bridgesmathart.org/2014/bridges2014-301.html http://archive.bridgesmathart.org/2014/bridges2014-301.pdf
 
* Harri Varpanen: Toss and Spin Juggling State Graphs. Pages 301–308 http://archive.bridgesmathart.org/2014/bridges2014-301.html http://archive.bridgesmathart.org/2014/bridges2014-301.pdf
  
* Tom Verhoeff and Koos Verhoeff: Lobke, and Other Constructions from Conical Segments. Pages 309–316 http://archive.bridgesmathart.org/2014/bridges2014-309.html http://archive.bridgesmathart.org/2014/bridges2014-309.pdf
+
* Tom Verhoeff and Koos Verhoeff: [[Lobke, and Other Constructions from Conical Segments]]. Pages 309–316 http://archive.bridgesmathart.org/2014/bridges2014-309.html http://archive.bridgesmathart.org/2014/bridges2014-309.pdf
  
 
* Mara Alagic: Preservice Elementary Teachers: Creative Thinking, Pedagogy and MathArt Projects. Pages 317–320 http://archive.bridgesmathart.org/2014/bridges2014-317.html http://archive.bridgesmathart.org/2014/bridges2014-317.pdf
 
* Mara Alagic: Preservice Elementary Teachers: Creative Thinking, Pedagogy and MathArt Projects. Pages 317–320 http://archive.bridgesmathart.org/2014/bridges2014-317.html http://archive.bridgesmathart.org/2014/bridges2014-317.pdf
Zeile 103: Zeile 103:
 
* Robert Bosch and Julia Olivieri: Game-of-Life Mosaics. Pages 325–328 http://archive.bridgesmathart.org/2014/bridges2014-325.html http://archive.bridgesmathart.org/2014/bridges2014-325.pdf  
 
* Robert Bosch and Julia Olivieri: Game-of-Life Mosaics. Pages 325–328 http://archive.bridgesmathart.org/2014/bridges2014-325.html http://archive.bridgesmathart.org/2014/bridges2014-325.pdf  
  
* Vladimir Bulatov: Inversive Kaleidoscopes and their Visualization. Pages 329–332 http://archive.bridgesmathart.org/2014/bridges2014-329.html http://archive.bridgesmathart.org/2014/bridges2014-329.pdf
+
* Vladimir Bulatov: [[Inversive Kaleidoscopes and their Visualization]]. Pages 329–332 http://archive.bridgesmathart.org/2014/bridges2014-329.html http://archive.bridgesmathart.org/2014/bridges2014-329.pdf
  
 
* Douglas G. Burkholder: Visualizing Affine Regular, Area-Preserving Decompositions of Irregular 3D Pentagons and Heptagons. Pages 333–336 http://archive.bridgesmathart.org/2014/bridges2014-333.html http://archive.bridgesmathart.org/2014/bridges2014-333.pdf
 
* Douglas G. Burkholder: Visualizing Affine Regular, Area-Preserving Decompositions of Irregular 3D Pentagons and Heptagons. Pages 333–336 http://archive.bridgesmathart.org/2014/bridges2014-333.html http://archive.bridgesmathart.org/2014/bridges2014-333.pdf
Zeile 137: Zeile 137:
 
* John Hiigli: Homages to Geraldo de Barross. Pages 393–396 http://archive.bridgesmathart.org/2014/bridges2014-393.html http://archive.bridgesmathart.org/2014/bridges2014-393.pdf
 
* John Hiigli: Homages to Geraldo de Barross. Pages 393–396 http://archive.bridgesmathart.org/2014/bridges2014-393.html http://archive.bridgesmathart.org/2014/bridges2014-393.pdf
  
* Akio Hizume, Takamichi Sushida and Yoshikazu Yamagishi: Voronoi Phyllotaxis Tiling on Fermat Spiral. Pages 397–400 http://archive.bridgesmathart.org/2014/bridges2014-397.html http://archive.bridgesmathart.org/2014/bridges2014-397.pdf
+
* Akio Hizume, Takamichi Sushida and Yoshikazu Yamagishi: [[Voronoi Phyllotaxis Tiling on Fermat Spiral]]. Pages 397–400 http://archive.bridgesmathart.org/2014/bridges2014-397.html http://archive.bridgesmathart.org/2014/bridges2014-397.pdf
  
 
* Hartmut F. W. Höft: Drawing with Elliptical Arcs. Pages 401–404 http://archive.bridgesmathart.org/2014/bridges2014-401.html http://archive.bridgesmathart.org/2014/bridges2014-401.pdf
 
* Hartmut F. W. Höft: Drawing with Elliptical Arcs. Pages 401–404 http://archive.bridgesmathart.org/2014/bridges2014-401.html http://archive.bridgesmathart.org/2014/bridges2014-401.pdf

Version vom 28. Dezember 2014, 17:24 Uhr


Reference

Gary Greenfield, George Hart and Reza Sarhangi: Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture. Tessellations Publishing, Phoenix, Arizona, 2014. ISBN 978-1-938664-11-3

DOI

Abstract

Extended Abstract

Reviews

Bibtex

Table of contents

Links

Full Text

http://archive.bridgesmathart.org/2014/index.html

intern file

Sonstige Links

http://bridgesmathart.org/bridges-2014/