The role of blending in mathematical invention: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „== Reference == Felix Bou, Marco Schorlemmer, Joe Corneli, Danny Gomez Ramirez, Ewen Maclean, Alan Smaill and Alison Pease: The role of blending in mathemati…“) |
(kein Unterschied)
|
Version vom 29. Oktober 2015, 22:06 Uhr
Inhaltsverzeichnis
Reference
Felix Bou, Marco Schorlemmer, Joe Corneli, Danny Gomez Ramirez, Ewen Maclean, Alan Smaill and Alison Pease: The role of blending in mathematical invention. In: Computational Creativity 2015 ICCC 2015, 55-62.
DOI
Abstract
We model the mathematical process whereby new mathematical theories are invented. Here we explain the use of conceptual blending for this purpose, and show examples to illustrate the process in action. Our longerterm goal is to support machine and human mathematical creativity.
Extended Abstract
Bibtex
@inproceedings{ author = {Bou, Felix and Schorlemmer, Marco and Corneli, Joe and Ramirez, Danny Gomez and Maclean, Ewen and Smaill, Alan and Pease, Alison}, title = {The role of blending in mathematical invention}, booktitle = {Proceedings of the Sixth International Conference on Computational Creativity}, series = {ICCC2015}, year = {2015}, month = {Jun}, location = {Park City, Utah, USA}, pages = {55-62}, url = {http://computationalcreativity.net/iccc2015/proceedings/3_2Bou.pdf}, url = {http://de.evo-art.org/index.php?title=The_role_of_blending_in_mathematical_invention}, publisher = {International Association for Computational Creativity}, keywords = {computational, creativity}, }
Used References
Alexander, J. (2011). ‘Blending in mathematics’. Semiotica, 2011(187), 1–48.
Arbib, M. A., and Hesse, M. B. (1986). The construction of reality. Cambridge, England: Cambridge University Press.
Astesiano, E. et al. (2002). ‘CASL: the common algebraic specification language’. Theoretical Computer Science, 286(2), 153–196.
Boden, M. A. (1977). Artificial intelligence and natural man. Harvester Press.
Deleuze, G. (1994). Difference and repetition. Translated by Paul Patton. London: Bloomsbury Academic.
Eisenbud, D. (1995). Commutative algebra with a view toward algebraic geometry. Graduate Texts in Mathematics. Springer.
Fauconnier, G., and Turner, M. (1998). ‘Conceptual integration networks’. Cognitive Science, 22(2), 133–187. Extended version 2001 on-line.
Fauconnier, G., and Turner, M. (2002). The way we think: conceptual blending and the mind’s hidden complexities. Basic Books.
Goguen, J. A. (1992). ‘Sheaf semantics for concurrent interacting objects’. Mathematical Structures in Computer Science, 159–191.
Goguen, J. A. (1999). ‘An introduction to algebraic semiotics, with application to user interface design’. In Computation for metaphors, analogy, and agents (Vol. 1562, pp. 242–291). LNCS. Springer.
Goguen, J. A. (2005). ‘What is a concept?’ In Conceptual structures: common semantics for sharing knowledge (Vol. 3596, pp. 52–57). LNAI. Springer.
Grothendieck, A., and Dieudonné, J. (1971). Eléments de géométrie algébrique I (seconde édition). Springer.
Gust, H., Kühnberger, K.-U., and Schmidt, U. (2006). ‘Metaphors and heuristic-driven theory projection (HDTP)’. Theoretical Computer Science, 354, 98– 117.
Hedblom, M., Kutz, O., and Neuhaus, F. (2014). ‘On the cognitive and logical role of image schemas in computational conceptual blending’. In A. Lieto et al. (Eds.), Proceedings of the second international workshop on artificial intelligence and cognition (AIC 2014) (Vol. 1315, pp. 110–121). CEUR Workshop Proceedings.
Koestler, A. (1964). The act of creation. Hutchinson. Kutz, O., Neuhaus, F., Mossakowski, T., and Codescu, M. (2014). ‘Blending in the Hub – towards a collaborative concept invention platform’. In Proceedings of the fifth international conference on computational creativity, ICCC 2014.
Lakoff, G., and Núñez, R. (2000). Where mathematics comes from: how the embodied mind brings mathematics into being. New York: Basic Books.
Larvor, B. (2011). ‘Albert Lautman: Dialectics in Mathematics’. Foundations of the Formal Sciences VII.
Lautman, A. (2011). Mathematics, ideas and the physical real. Translated by Simon Duffy. A&C Black.
Mandler, J. M., and Canovás, C. P. (2014). ‘On defining image schemas’. Language and Cognition, 6, 510–532.
Martinez, M. et al. (2014). ‘Algorithmic aspects of theory blending’. In 12th international conference on Artificial Intelligence and Symbolic Computation. Sevilla, Spain.
Mossakowski, T., Maeder, C., and Lüttich, K. (2007). ‘The Heterogeneous Tool Set’. In O. Grumberg, and M. Huth (Eds.), Tacas 2007 (Vol. 4424, pp. 519–522). Lecture Notes in Computer Science. Springer.
Núñez, R. (2005). ‘Creating mathematical infinities: the beauty of transfinite cardinals’. Journal of Pragmatics, 37(10), 1717–1741.
Pereira, F. C. (2007). Creativity and artificial intelligence: a conceptual blending approach. Applications of Cognitive Linguistics. Mouton de Gruyter.
Schmidt, M. (2010). Restricted higher-order anti-unification for heuristic-driven theory projection (PICS-Report No. 31-2010). Univ. Osnabrück. Germany.
Steiner, G. (2001). Grammars of creation. London: Faber and Faber.
Turner, M. (2005). ‘Mathematics and narrative’. In International conference on mathematics and narrative. Mykonos, Greece.
Turner, M. (2014). The origin of ideas: blending, creativity and the human spark. Oxford: OUP.
Weil, A. (1960). ‘De la métaphysique aux mathématiques’. Sciences. in (Weil, 1979, pp 408–412).
Weil, A. (1979). OEuvres scientifiques/collected papers. Corrected second printing. New York: Springer.
Links
Full Text
http://computationalcreativity.net/iccc2015/proceedings/3_2Bou.pdf