Vismantic: Meaning-making with Images

Aus de_evolutionary_art_org
Version vom 2. November 2015, 21:01 Uhr von Gubachelier (Diskussion | Beiträge) (Bibtex)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Reference

Ping Xiao and Simo Linkola: Vismantic: Meaning-making with Images. In: Computational Creativity 2015 ICCC 2015, 158-165.

DOI

Abstract

This paper presents Vismantic, a semi-automatic system generating proposals of visual composition (visual ideas) in order to express specific meanings. It implements a process of developing visual solutions from ‘what to say’ to ‘how to say’, which requires both conceptual and visual creativity. In particular, Vismantic extends our previous work on using conceptual knowledge to find diverse visual representations of abstract concepts, with the capacity of combining two images in three ways, including juxtaposition, replacement and fusion. In an informal evaluation consisting of five communication tasks, Vismantic demonstrated the potential of producing a number of expressive and diverse ideas, among which many are surprising. Our analysis of the generated images confirms that visual meaningmaking is a subtle interaction between all elements in a picture, for which Vismantic demands more visual semantic knowledge, higher image analysis and synthesis skills, and the ability of interpreting composed images, in order to deliver more ideas that make sense.

Extended Abstract

Bibtex

@inproceedings{
 author = {Xiao, Ping and Linkola, Simo},
 title = {Vismantic: Meaning-making with Images},
 booktitle = {Proceedings of the Sixth International Conference on Computational Creativity},
 series = {ICCC2015},
 year = {2015},
 month = {Jun},
 location = {Park City, Utah, USA},
 pages = {158-165},
 url = {http://computationalcreativity.net/iccc2015/proceedings/7_2Xiao.pdf http://de.evo-art.org/index.php?title=Vismantic:_Meaning-making_with_Images },
 publisher = {International Association for Computational Creativity},
 keywords = {computational, creativity},
}

Used References

Borji, A.; Sihite, D.; and Itti, L. 2012. Salient object detection: A benchmark. In Fitzgibbon, A.; Lazebnik, S.; Perona, P.; Sato, Y.; and Schmid, C., eds., Computer Vision ECCV 2012. Springer Berlin Heidelberg. 414–429.

Chen, T.; Cheng, M.-M.; Tan, P.; Shamir, A.; and Hu, S.- M. 2009. Sketch2photo: Internet image montage. In Proceedings of the ACM SIGGRAPH Asia 2009, SA ’09, 124:1– 124:10.

Cheng, M.-M.; Zhang, G.-X.; Mitra, N. J.; Huang, X.; and Hu, S.-M. 2011. Global contrast based salient region detection. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’11, 409– 416.

Cheng, M.-M.; Mitra, N. J.; Huang, X.; Torr, P. H. S.; and Hu, S. 2015. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 37(3):569–582.

Daisy, M.; Tschumperl´e, D.; and L´ezoray, O. 2013. A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting. In SIGGRAPH Asia 2013 Technical Briefs, SA ’13, 8:1–8:4.

De Smedt, T.; De Bleser, F.; Van Asch, V.; Nijs, L.; and Daelemans, W. 2013. Gravital: Natural language processing for computer graphics. In Veale, T.; Kurt, F.; and Forceville, C., eds., Creativity and the Agile Mind: A Multi- Disciplinary Study of a Multi-Faceted Phenomenon. Berlin: Mouton. 81–98.

Diakopoulos, N.; Essa, I.; and Jain, R. 2004. Content based image synthesis. In Enser, P.; Kompatsiaris, Y.; O’Connor, N.; Smeaton, A.; and Smeulders, A., eds., Image and Video Retrieval. Springer Berlin Heidelberg. 299–307.

Harrison, P. 2005. Image Texture Tools. Ph.D. Dissertation, Monash University.

Krzeczkowska, A.; El-Hage, J.; Colton, S.; and Clark, S. 2010. Automated Collage Generation –With Intent. In Proceedings of the International Conference on Computational Creativity, ICCC ’10, 36–40.

Lalonde, J.-F.; Hoiem, D.; Efros, A. A.; Rother, C.; Winn, J.; and Criminisi, A. 2007. Photo clip art. In Proceedings of the ACM SIGGRAPH 2007, SIGGRAPH ’07.

Norton, D.; Heath, D.; and Ventura, D. 2010. Establishing Appreciation in a Creative System. In Proceedings of the International Conference on Computational Creativity, ICCC ’10, 26–35.

Norton, D.; Heath, D.; and Ventura, D. 2011. Autonomously creating quality images. In Proceedings of the 2nd International Conference on Computational Creativity, ICCC ’11, 10–15.

Phillips, B. J., and McQuarrie, E. F. 2004. Beyond visual metaphor: A new typology of visual rhetoric in advertising. Marketing Theory 4(1-2):113–136.

Xiao, P., and Blat, J. 2012. Image the imageless: Harvesting connotation knowledge for visual expression. In Proceedings of the 7th International Conference on Design Principles and Practices.

Xiao, P., and Blat, J. 2013. Generating apt metaphor ideas for pictorial advertisements. In Proceedings of the 4th International Conference on Computational Creativity, ICCC ’13, 8–15.


Links

Full Text

http://computationalcreativity.net/iccc2015/proceedings/7_2Xiao.pdf

intern file

Sonstige Links