A Complexity Approach for Identifying Aesthetic Composite Landscapes

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Adrian Carballal, Rebeca Perez, Antonino Santos, Luz Castro: A Complexity Approach for Identifying Aesthetic Composite Landscapes. In: EvoMUSART 2014, S. 50-61.




The present paper describes a series of features related to complexity which may allow to estimate the complexity of an image as a whole, of all the elements integrating it and of those which are its focus of attention. Using a neural network to create a classifier based on those features an accuracy over 85% in an aesthetic composition binary classification task is achieved. The obtained network seems to be useful for the purpose of assessing the Aesthetic Composition of landscapes. It could be used as part of a media device for facilitating the creation of images or videos with a more professional aesthetic composition.

Extended Abstract


booktitle={Evolutionary and Biologically Inspired Music, Sound, Art and Design},
series={Lecture Notes in Computer Science},
editor={Romero, Juan and McDermott, James and Correia, João},
title={A Complexity Approach for Identifying Aesthetic Composite Landscapes},
url={http://dx.doi.org/10.1007/978-3-662-44335-4_5 http://de.evo-art.org/index.php?title=A_Complexity_Approach_for_Identifying_Aesthetic_Composite_Landscapes },
publisher={Springer Berlin Heidelberg},
author={Carballal, Adrian and Perez, Rebeca and Santos, Antonino and Castro, Luz},

Used References

Arnheim, R.: Art and Visual Perception, a Psychology of the Creative Eye. Faber and Faber, London (1956)

Forsythe, A., Nadal, M., Sheehy, N., Cela-Conde, C.J., Sawey, M.: Predicting beauty: Fractal dimension and visual complexity in art. British Journal of Psychology 102(1), 49–70 (2011)

Galanter, P.: What is generative art? complexity theory as a context for art theory. In: International Conference on Generative Art, Milan, Italy (2003)

Levin, G., Feinberg, J., Curtis, C.: Alphabet synthesis machine (2006), http://alphabet.tmema.org

Liu, L., Chen, R., Wolf, L., Cohen-Or, D.: Optimizing photo composition. Comput. Graph. Forum 29(2), 469–478 (2010)

Luo, Y., Tang, X.: Photo and video quality evaluation: Focusing on the subject. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 386–399. Springer, Heidelberg (2008)

Machado, P., Cardoso, A.: All the truth about NEvAr. Applied Intelligence, Special Issue on Creative Systems 16(2), 101–119 (2002)

Machado, P., Romero, J., Cardoso, A., Santos, A.: Partially interactive evolutionary artists. New Generation Computing – Special Issue on Interactive Evolutionary Computation 23(42), 143–155 (2005)

Machado, P., Cardoso, A.: Computing aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–228. Springer, Heidelberg (1998)

Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics: An iterative approach to stylistic change in evolutionary art. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 381–415. Springer, Heidelberg (2007)

Rigau, J., Feixas, M., Sbert, M.: Informational dialogue with van gogh’s paintings. In: Eurographics Symposium on Computational Aesthetics in Graphics, Visualization and Imaging, pp. 115–122 (June 2008)

Romero, J., Machado, P., Carballal, A., Correia, J.: Computing aesthetics with image judgement systems. In: McCormack, J., do, M. (eds.) Computers and Creativity, pp. 295–322. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-31727-9_11

Romero, J., Machado, P., Carballal, A., Osorio, O.: Aesthetic classification and sorting based on image compression. In: Chio, C.D., et al. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 394–403. Springer, Heidelberg (2011)

Romero, J., Machado, P., Carballal, A., Santos, A.: Using complexity estimates in aesthetic image classification. Journal of Mathematics and the Arts 6(2-3), 125–136 (2012)

Romero, J., Machado, P., Santos, A., Cardoso, A.: On the development of critics in evolutionary computation artists. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2003. LNCS, vol. 2611, pp. 559–569. Springer, Heidelberg (2003)

Ross, B.J., Ralph, W., Hai, Z.: Evolutionary image synthesis using a model of aesthetics. In: Yen, G.G., Lucas, S.M., Fogel, G., Kendall, G., Salomon, R., Zhang, B.T., Coello, C.A.C., Runarsson, T.P. (eds.) Proceedings of the 2006 IEEE Congress on Evolutionary Computation, July 16–21, pp. 1087–1094. IEEE Press, Vancouver (2006)

Santella, A., Agrawala, M., DeCarlo, D., Salesin, D., Cohen, M.: Gaze-based interaction for semi-automatic photo cropping. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, pp. 771–780. ACM, New York (2006)

Suh, B., Ling, H., Bederson, B.B., Jacobs, D.W.: Automatic thumbnail cropping and its effectiveness. In: UIST, pp. 95–104. ACM (2003)

Wang, J., Cohen, M.F.: Simultaneous matting and compositing. In: Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007). IEEE Computer Society (2007)

Zell, A., Mamier, G., Vogt, M., Mache, N., Hübner, R., Döring, S., Herrmann, K.U., Soyez, T., Schmalzl, M., Sommer, T., et al.: SNNS: Stuttgart Neural Network Simulator User Manual, version 4.2. Tech. Rep. 3/92, University of Stuttgart, Stuttgart (2003)

Zhang, M., Zhang, L., Sun, Y., Feng, L., Ma, W.Y.: Auto cropping for digital photographs. In: ICME, pp. 438–441 (2005)


Full Text

[extern file]

intern file

Sonstige Links