A Preference Optimization Based Unifying Framework for Supervised Learning Problems

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche

Reference

Fabio Aiolli, Alessandro Sperduti: A Preference Optimization Based Unifying Framework for Supervised Learning Problems. In: Fürnkranz, J. and Hüllermeier, E.: Preference Learning, 2011, 19-42.

DOI

http://dx.doi.org/10.1007/978-3-642-14125-6_2

Abstract

Supervised learning is characterized by a broad spectrum of learning problems, often involving structured types of prediction, including classification, ranking-based predictions (label and instance ranking), and (ordinal) regression in its various forms. All these different learning problems are typically addressed by specific algorithmic solutions.

In this chapter, we propose ageneral preference learning model (GPLM), which gives an easy way to translate any supervised learning problem and the associated cost functions into sets of preferences to learn from. A large margin principled approach to solve this problem is also proposed.

Examples of how the proposed framework has been effectively used by us to address non-standard real-world applications are reported showing the flexibility and effectiveness of the approach.

Extended Abstract

Bibtex

@incollection{
year={2011},
isbn={978-3-642-14124-9},
booktitle={Preference Learning},
editor={Fürnkranz, Johannes and Hüllermeier, Eyke},
doi={10.1007/978-3-642-14125-6_2},
title={A Preference Optimization Based Unifying Framework for Supervised Learning Problems},
url={http://dx.doi.org/10.1007/978-3-642-14125-6_2, http://de.evo-art.org/index.php?title=A_Preference_Optimization_Based_Unifying_Framework_for_Supervised_Learning_Problems },
publisher={Springer Berlin Heidelberg},
author={Aiolli, Fabio and Sperduti, Alessandro},
pages={19-42},
language={English}
}

Used References

1. F.Aiolli, Large margin multiclass learning: models and algorithms. Ph.D. thesis, Department of Computer Science, University of Pisa, 2004. http://www.di.unipi.it/​phd/​tesi/​tesi_​2004/​PhDthesisAiolli.​ps.​gz

2. F.Aiolli, A preference model for structured supervised learning tasks, in Proceedings of the IEEE International Conference on Data Mining (ICDM) (2005), pp. 557–560

3. F.Aiolli, R.Cardin, F.Sebastiani, A.Sperduti, Preferential text classification: Learning algorithms and evaluation measures. Inf. Retr. 12(5), 559–580 (2009) http://dx.doi.org/10.1007/s10791-008-9071-y

4. F.Aiolli, M.De Filippo, A.Sperduti, Application of the preference learning model to a human resources selection task, in Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM) (Amsterdam, NL, 2009), pp. 203–210

5. F.Aiolli, A.Sperduti, Learning preferences for multiclass problems, in Advances in Neural Information Processing Systems (MIT, Cambridge, MA, 2005) pp. 17–24

6. C.J.C. Burges, T.Shaked, E.Renshaw, A.Lazier, M.Deeds, N.Hamilton, G.N. Hullender, Learning to rank using gradient descent, in Proceedings of the International Conference on Machine Learning (ICML) (2005), pp. 89–96

7. W.Chu, S.Sathiya Keerthi, Support vector ordinal regression. Neural Comput. 19(3), 792–815 (2007) http://dx.doi.org/10.1162/neco.2007.19.3.792

8. W.W. Cohen, R.E. Schapire, Y.Singer, Learning to order things. J. Artif. Intell. Res. 10 243–270 (1999)

9. K.Crammer, Y.Singer, Pranking with ranking, in Advances in Neural Information Processing Systems (NIPS) (2002), pp. 641–647

10. K.Crammer, Y.Singer, A family of additive online algorithms for category ranking. J. Mach. Learn. Res. 3, 1025–1058 (2003)

11. O.Dekel, C.D. Manning, Y.Singer, Log-linear models for label ranking, in Advances in Neural Information Processing Systems (2003)

12. T.Evgeniou, M.Pontil, T.Poggio, Regularization networks and support vector machines. Adv. Comput. Math. 13, 1–50 (2000) http://dx.doi.org/10.1023/A%3A1018946025316

13. C.J. Fall, A.Törcsvári, K.Benzineb, G.Karetka, Automated categorization in the International Patent Classification. SIGIR Forum 37(1), 10–25 (2003) http://dx.doi.org/10.1145/945546.945547

14. Y.Freund, R.D. Iyer, R.E. Schapire, Y.Singer, An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

15. T.T. Friess, N.Cristianini, C.Campbell, The kernel adatron algorithm: a fast and simple learning procedure for support vector machines, in Proceedings of International Conference of Machine Learning (ICML) (1998), pp. 188–196

16. T.T. Friess, N.Cristianini, C.Campbell, Subset ranking using regression, in Proceedings of the International Conference on Learning Theory (COLT) (Springer Berlin/Heidelberg, 2006), pp. 605–619

17. J.Fürnkranz, E.Hüllermeier, E.Mencía, K.Brinker, Multilabel classification via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008) http://dx.doi.org/10.1007/s10994-008-5064-8

18. S.Har-Peled, D.Roth, D.Zimak, Constraint classification for multiclass classification and ranking, in Advances in Neural Information Processing Systems (2002), pp. 785–792

19. R.Herbrich, T.Graepel, P.Bollmann-Sdorra, K.Ober-mayer, Learning a preference relation for information retrieval, in Proceedings of the AAAI Workshop Text Categorization and Machine Learning (1998)

20. R.Herbrich, T.Graepel, K.Obermayer, Large margin rank boundaries for ordinal regression, in Advances in Large Margin Classifiers (MIT, 2000), pp. 115–132

21. E.Hüllermeier, J.Fürnkranz, W.Cheng, K.Brinker, Label ranking by learning pairwise preferences. Artif. Intell. 172(16–17), 1897–1916 (2008)

22. T.Joachims, Making large-scale svm learning practical, in Advances in Kernel Methods - Support Vector Learning ed. by B.Schlkopf, C.Burges, A.Smola (MIT, 1999)

23. T.Joachims, Optimizing search engines using clickthrough data, in Proceedings of the Conference on Knowledge Discovery and Data Mining (KDD) (2002) pp. 133–142

24. Q.Le, A.Smola, Direct optimization of ranking measures. Technical report, NICTA, Canberra, Australia, 2007

25. P.Li, C.Burges, Q.Wu, Mcrank: Learning to rank using multiple classification and gradient boosting, in Advances in Neural Information Processing Systems (NIPS) (MIT, 2008), pp.897–904

26. P.McCullagh, J.A. Nelder, Generalized Linear Models (Chapman & Hall, 1983)

27. R.Nallapati, Discriminative models for information retrieval, in Proceedings of the Conference on Research and Development in Information Retrieval (SIGIR) (ACM, 2004), pp. 64–71

28. J.C. Platt, N.Cristianini, J. Shawe-Taylor, Large margin DAGs for multiclass classification, in Advances in Neural Information Processing Systems (NIPS) (1999), pp. 547–533

29. A.Shashua, A.Levin, Ranking with large margin principle: Two approaches, in Advances in Neural Information Processing Systems (NIPS) (2002), pp. 937–944

30. I.Tsochantaridis, T.Hofmann, T.Joachims, Y.Altun, Support vector machine learning for interdependent and structured output spaces, in Proceedings of the International Conference on Machine learning (ICML) (2004), pp. 1453–1484

31. H.Wu, H.Lu, S.Ma, A practical svm-based algorithm for ordinal regression in image retrieval, in Proceedings of the ACM international conference on Multimedia (2003), pp. 612–621

32. F.Xia, T.Liu, J.Wang, W.Zhang, H.Li, Listwise approach to learning to rank: theory and algorithm, in Proceedings of the International Conference on Machine Learning (ICML) (2008), pp. 1192–1199


Links

Full Text

intern file

Sonstige Links