A Survey and Empirical Comparison of Object Ranking Methods

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Toshihiro Kamishima, Hideto Kazawa, Shotaro Akaho: A Survey and Empirical Comparison of Object Ranking Methods. In: Fürnkranz, J. and Hüllermeier, E.: Preference Learning, 2011, 181-201.




Ordered lists of objects are widely used as representational forms. Such ordered objects include Web search results or bestseller lists. In spite of their importance, methods of processing orders have received little attention. However, research concerning orders has recently become common; in particular, researchers have developed various methods for the task of Object Ranking to acquire functions for object sorting from example orders. Here, we give a unified view of these methods and compare their merits and demerits.

Extended Abstract


booktitle={Preference Learning},
editor={Fürnkranz, Johannes and Hüllermeier, Eyke},
title={A Survey and Empirical Comparison of Object Ranking Methods},
url={http://dx.doi.org/10.1007/978-3-642-14125-6_9, http://de.evo-art.org/index.php?title=A_Survey_and_Empirical_Comparison_of_Object_Ranking_Methods },
publisher={Springer Berlin Heidelberg},
author={Kamishima, Toshihiro and Kazawa, Hideto and Akaho, Shotaro},

Used References

1. J.I. Marden, Analyzing and Modeling Rank Data, Vol. 64, Monographs on Statistics and Applied Probability (Chapman & Hall, 1995)

2. M. Kendall, J.D. Gibbons, Rank Correlation Methods, 5th edn. (Oxford University Press, 1990)

3. K.J. Arrow, Social Choice and Individual Values, 2nd edn. (Yale University Press, 1963)

4. D. Bollegala, N. Okazaki, M. Ishizuka, A machine learning approach to sentence ordering for multidocument summarization and its evaluation, in Proceedings of the Natural Language Processing society of Japan (2005)

5. C. Dwork, R. Kumar, M. Naor, D. Sivakumar, Rank aggregation methods for the Web, in Proceedings of The 10th International Conference on World Wide Web (2001), pp. 613–622

6. A. Agresti, Categorical Data Analysis, 2nd edn. (Wiley, 1996)

7. P. McCullagh, Regression models for ordinal data. J. Royal Stat. Soc. B 42(2), 109–142 (1980)

8. A. Shashua, A. Levin, Ranking with large margin principle: Two approaches, in Advances in Neural Information Processing Systems, vol. 15 (2003), pp. 961–968

9. W.W. Cohen, R.E. Schapire, Y. Singer, Learning to order things. J. Artif. Intell. Res. 10, 243–270 (1999)

10. M. Grötschel, M. Jünger, G. Reinelt, A cutting plane algorithm for the linear ordering problem. Oper. Res. 32(6), 1195–1220 (1984) http://dx.doi.org/10.1287/opre.32.6.1195

11. N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Mach. Learn. 2, 285–318 (1988)

12. Y. Freund, R. Iyer, R.E. Schapire, Y. Singer, An efficient boosting algorithm for combining preferences, in Proceedings of The 15th International Conference on Machine Learning (1998), pp. 170–178

13. Y. Freund, R. Iyer, R.E. Schapire, Y. Singer, An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

14. H. Kazawa, T. Hirao, E. Maeda, Order SVM: a kernel method for order learning based on generalized order statistics. Syst. Comput. Jpn. 36(1), 35–43 (2005) http://dx.doi.org/10.1002/scj.10630

15. R. Herbrich, T. Graepel, P. Bollmann-Sdorra, K. Obermayer, Learning preference relations for information retrieval, in ICML-98 Workshop: Text Categorization and Machine Learning (1998), pp. 80–84

16. R. Herbrich, T. Graepel, K. Obermayer, Support vector learning for ordinal regression, in Proceedings of the 9th International Conference on Artificial Neural Networks (1999), pp. 97–102

17. T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of The 8th International Conference on Knowledge Discovery and Data Mining (2002), pp. 133–142

18. O. Luaces, G.F. Bayón, J.R. Quevedo, J. Díez, J.J. del Coz, A. Bahamonde, Analyzing sensory data using non-linear preference learning with feature subset selection, in Proceedings of the 15th European Conference on Machine Learning (2004), pp. 286–297 [LNAI 3201]

19. T. Kamishima, H. Kazawa, S. Akaho, Supervised ordering – an empirical survey, in Proceedings of The 5th IEEE International Conference on Data Mining (2005), pp. 673–676

20. B.C. Arnold, N. Balakrishnan, H.N. Nagaraja, A First Course in Order Statistics (Wiley, 1992)

21. L.L. Thurstone, A law of comparative judgment. Psychol. Rev. 34, 273–286 (1927) http://dx.doi.org/10.1037/h0070288

22. T. Kamishima, Nantonac collaborative filtering: Recommendation based on order responses, in Proceedings of The 9th International Conference on Knowledge Discovery and Data Mining (2003), pp. 583–588

23. T. Kamishima, J. Fujiki, Clustering orders, in Proceedings of The 6th International Conference on Discovery Science (2003), pp. 194–207 [LNAI 2843]

24. T. Kamishima, S. Akaho, Efficient clustering for orders, in Mining Complex Data, vol. 165, Studies in Computational Intelligence, ed. by D.A. Zighed, S. Tsumoto, Z.W. Ras, H. Hacid (Springer, 2009), pp. 261–280

25. D.E. Critchlow, M.A. Fligner, J.S. Verducci, Probability models on rankings. J. Math. Psychol. 35, 294–318 (1991) http://dx.doi.org/10.1016/0022-2496(91)90050-4

26. F. Mosteller, Remarks on the method of paired comparisons: I – the least squares solution assuming equal standard deviations and equal correlations. Psychometrika 16(1), 3–9 (1951) http://dx.doi.org/10.1007/BF02313422

27. B. Babington Smith, Discussion on professor ross’s paper. J. Royal Stat. Soc. B 12, 53–56 (1950) (A.S.C. Ross, “Philological Probability Problems”, pp. 19–41)

28. R.A. Bradley, M.E. Terry, Rank analysis of incomplete block designs – i. The method of paired comparisons. Biometrika 39, 324–345 (1952)

29. C.L. Mallows, Non-null ranking models, I. Biometrika 44, 114–130 (1957)

30. R.L. Plackett, The analysis of permutations. J. Royal Stat. Soc. C 24(2), 193–202 (1975)


Full Text


intern file

Sonstige Links