A formal theory of creativity to model the creation of art

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Schmidhuber, J.: A formal theory of creativity to model the creation of art. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp. 323–337. Springer, Heidelberg (2012)




According to the Formal Theory of Creativity (1990–2010), a creative agent—one that never stops generating non-trivial, novel, and surprising behaviours and data—must have two learning components: a general reward optimiser or reinforcement learner, and an adaptive encoder of the agent’s growing data history (the record of the agent’s interaction with its environment). The learning progress of the encoder is the intrinsic reward for the reward optimiser. That is, the latter is motivated to invent interesting spatio-temporal patterns that the encoder does not yet know but can easily learn to encode better with little computational effort. To maximise expected reward (in the absence of external reward), the reward optimiser will create more and more-complex behaviours that yield temporarily surprising (but eventually boring) patterns that make the encoder quickly improve. I have argued that this simple principle explains science, art, music and humour. It is possible to rigorously formalise it and implement it on learning machines, thus building artificial robotic scientists and artists equipped with curiosity and creativity. I summarise my work on this topic since 1990, and present a previously unpublished low-complexity artwork computable by a very short program discovered through active search for novel patterns according to the principles of the theory.

Extended Abstract


booktitle={Computers and Creativity},
editor={McCormack, Jon and d’Inverno, Mark},
title={A Formal Theory of Creativity to Model the Creation of Art},
url={http://dx.doi.org/10.1007/978-3-642-31727-9_12 http://de.evo-art.org/index.php?title=A_formal_theory_of_creativity_to_model_the_creation_of_art },
publisher={Springer Berlin Heidelberg},
author={Schmidhuber, Jürgen},

Used References

Bense, M. (1969). Einführung in die informationstheoretische Ästhetik. Grundlegung und Anwendung in der Texttheorie (Introduction to information-theoretical aesthetics. Foundation and application to text theory). Rowohlt Taschenbuch Verlag.

Berlyne, D. E. (1950). Novelty and curiosity as determinants of exploratory behavior. British Journal of Psychology, 41, 68–80.

Berlyne, D. E. (1960). Conflict, arousal, and curiosity. New York: McGraw-Hill. http://dx.doi.org/10.1037/11164-000

Birkhoff, G. D. (1933). Aesthetic measure. Cambridge: Harvard University Press.

Collingwood, R. G. (1938). The principles of art. London: Oxford University Press.

Cuccu, G., Luciw, M., Schmidhuber, J., & Gomez, F. (2011). Intrinsically motivated evolutionary search for vision-based reinforcement learning. In Proceedings of the 2011 IEEE conference on development and learning and epigenetic robotics IEEE-ICDL-EPIROB. New York: IEEE Press.

Danto, A. (1981). The transfiguration of the commonplace. Cambridge: Harvard University Press.

Dutton, D. (2002). Aesthetic universals. In B. Gaut & D. M. Lopes (Eds.), The Routledge companion to aesthetics.

Frank, H. G. (1964). Kybernetische Analysen subjektiver Sachverhalte. Quickborn: Verlag Schnelle.

Frank, H. G., & Franke, H. W. (2002). Ästhetische Information. Estetika informacio. Eine Einführung in die kybernetische Ästhetik. Kopäd Verlag.

Franke, H. W. (1979). Kybernetische Ästhetik. Phänomen kunst (3rd ed.). Munich: Ernst Reinhardt Verlag.

Goodman, N. (1968). Languages of art: an approach to a theory of symbols. Indianapolis: The Bobbs-Merrill Company.

Harlow, H. F., Harlow, M. K., & Meyer, D. R. (1950). Novelty and curiosity as determinants of exploratory behavior. Journal of Experimental Psychology, 41, 68–80.

Huffman, D. A. (1952). A method for construction of minimum-redundancy codes. Proceedings IRE, 40, 1098–1101. http://dx.doi.org/10.1109/JRPROC.1952.273898

Hutter, M. (2005). Universal artificial intelligence: sequential decisions based on algorithmic probability. Berlin: Springer. On J. Schmidhuber’s SNF grant 20-61847.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: a survey. Journal of AI research, 4, 237–285.

Kant, I. (1781). Critik der reinen Vernunft.

Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 1–11.

Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266.

Li, M., & Vitányi, P. M. B. (1997). An introduction to Kolmogorov complexity and its applications (2nd ed.). Berlin: Springer.

Luciw, M., Graziano, V., Ring, M., & Schmidhuber, J. (2011). Artificial curiosity with planning for autonomous perceptual and cognitive development. In Proceedings of the first joint conference on development learning and on epigenetic robotics ICDL-EPIROB, Frankfurt.

Mandelbrot, B. (1982). The fractal geometry of nature. San Francisco: Freeman.

Moles, A. (1968). Information theory and esthetic perception. Champaign: University of Illinois Press.

Nake, F. (1974). Ästhetik als Informationsverarbeitung. Berlin: Springer. http://dx.doi.org/10.1007/978-3-7091-7097-7

Ngo, H., Ring, M., & Schmidhuber, J. (2011). Compression Progress-based curiosity drive for developmental learning. In Proceedings of the 2011 IEEE conference on development and learning and epigenetic robotics IEEE-ICDL-EPIROB. New York: IEEE Press.

Piaget, J. (1955). The child’s construction of reality. London: Routledge and Kegan Paul.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465–471. http://dx.doi.org/10.1016/0005-1098(78)90005-5

Schaul, T., Pape, L., Glasmachers, T., Graziano, V., & Schmidhuber, J. (2011a). Coherence progress: a measure of interestingness based on fixed compressors. In Fourth conference on artificial general intelligence (AGI).

Schaul, T., Sun, Y., Wierstra, D., Gomez, F., & Schmidhuber, J. (2011b). Curiosity-driven optimization. In IEEE congress on evolutionary computation (CEC), New Orleans, USA.

Schmidhuber, J. (1991a). Curious model-building control systems. In Proceedings of the international joint conference on neural networks, Singapore (Vol. 2, pp. 1458–1463). New York: IEEE Press.

Schmidhuber, J. (1991b). A possibility for implementing curiosity and boredom in model-building neural controllers. In J. A. Meyer & S. W. Wilson (Eds.), Proc. of the international conference on simulation of adaptive behavior: from animals to animats (pp. 222–227). Cambridge: MIT Press/Bradford Books.

Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2), 234–242. http://dx.doi.org/10.1162/neco.1992.4.2.234

Schmidhuber, J. (1997a). A computer scientist’s view of life, the universe, and everything. In C. Freksa, M. Jantzen & R. Valk (Eds.), Lecture notes in computer science: Vol. 1337. Foundations of computer science: potential—theory—cognition (pp. 201–208). Berlin: Springer. http://dx.doi.org/10.1007/BFb0052088

Schmidhuber, J. (1997b). Femmes fractales.

Schmidhuber, J. (1997c). Low-complexity art. Leonardo, Journal of the International Society for the Arts, Sciences, and Technology, 30(2), 97–103.

Schmidhuber, J. (1998). Facial beauty and fractal geometry (Technical report TR IDSIA-28-98). IDSIA. Published in the Cogprint Archive. http://cogprints.soton.ac.uk.

Schmidhuber, J. (1999). Artificial curiosity based on discovering novel algorithmic predictability through coevolution. In P. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao & Z. Zalzala (Eds.), Congress on evolutionary computation (pp. 1612–1618). New York: IEEE Press.

Schmidhuber, J. (2002a). Exploring the predictable. In A. Ghosh & S. Tsuitsui (Eds.), Advances in evolutionary computing (pp. 579–612). Berlin: Springer.

Schmidhuber, J. (2002b). Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science, 13(4), 587–612. http://dx.doi.org/10.1142/S0129054102001291

Schmidhuber, J. (2002c). The speed prior: a new simplicity measure yielding near-optimal computable predictions. In J. Kivinen & R. H. Sloan (Eds.), Lecture notes in artificial intelligence. Proceedings of the 15th annual conference on computational learning theory (COLT 2002), Sydney, Australia (pp. 216–228). Berlin: Springer.

Schmidhuber, J. (2004). Optimal ordered problem solver. Machine Learning, 54, 211–254. http://dx.doi.org/10.1023/B:MACH.0000015880.99707.b2

Schmidhuber, J. (2006a). Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connection Science, 18(2), 173–187. http://dx.doi.org/10.1080/09540090600768658

Schmidhuber, J. (2006b). Randomness in physics. Nature, 439(3), 392. Correspondence. http://dx.doi.org/10.1038/439392d

Schmidhuber, J. (2007a). Alle berechenbaren universen (all computable universes). Spektrum der Wissenschaft Spezial (German edition of Scientific American), 3, 75–79.

Schmidhuber, J. (2007b). Simple algorithmic principles of discovery, subjective beauty, selective attention, curiosity & creativity. In LNAI: Vol. 4755. Proc. 10th intl. conf. on discovery science (DS 2007) (pp. 26–38). Berlin: Springer. Joint invited lecture for ALT 2007 and DS 2007, Sendai, Japan, 2007.

Schmidhuber, J. (2009a). Art & science as by-products of the search for novel patterns, or data compressible in unknown yet learnable ways. In M. Botta (Ed.), Multiple ways to design research. Research cases that reshape the design discipline (pp. 98–112). Berlin: Springer. Swiss design network—et al. Edizioni.

chmidhuber, J. (2009b). Driven by compression progress: a simple principle explains essential aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science, music, jokes. In G. Pezzulo, M. V. Butz, O. Sigaud & G. Baldassarre (Eds.), Lecture notes in computer science: Vol. 5499. Anticipatory behavior in adaptive learning systems. From psychological theories to artificial cognitive systems (pp. 48–76). Berlin: Springer.

Schmidhuber, J. (2009c). Simple algorithmic theory of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science, music, jokes. SICE Journal of the Society of Instrument and Control Engineers, 48(1), 21–32.

Schmidhuber, J. (2009d). Ultimate cognition à la Gödel. Cognitive Computation, 1(2), 177–193. http://dx.doi.org/10.1007/s12559-009-9014-y

Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Transactions on Autonomous Mental Development, 2(3), 230–247. http://dx.doi.org/10.1109/TAMD.2010.2056368

Schmidhuber, J., & Heil, S. (1996). Sequential neural text compression. IEEE Transactions on Neural Networks, 7(1), 142–146. http://dx.doi.org/10.1109/72.478398

Schmidhuber, J., Zhao, J., & Wiering, M. (1997). Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning, 28, 105–130. http://dx.doi.org/10.1023/A:1007383707642

Shannon, C. E. (1948). A mathematical theory of communication (parts I and II). Bell System Technical Journal, XXVII, 379–423.

Solomonoff, R. J. (1978). Complexity-based induction systems. IEEE Transactions on Information Theory, IT-24(5), 422–432. http://dx.doi.org/10.1109/TIT.1978.1055913

Storck, J., Hochreiter, S., & Schmidhuber, J. (1995). Reinforcement driven information acquisition in non-deterministic environments. In Proceedings of the international conference on artificial neural networks (Vol. 2, pp. 159–164). Paris: EC2 & Cie.

Wallace, C. S., & Boulton, D. M. (1968). An information theoretic measure for classification. Computer Journal, 11(2), 185–194.

Wallace, C. S., & Freeman, P. R. (1987). Estimation and inference by compact coding. Journal of the Royal Statistical Society, Series B, 49(3), 240–265.

Wundt, W. M. (1874). Grundzüge der Physiologischen Psychologie. Leipzig: Engelmann.

Zuse, K. (1969). Rechnender raum. Braunschweig: Friedrich Vieweg & Sohn. English translation: Calculating space, MIT Technical Translation AZT-70-164-GEMIT, Massachusetts Institute of Technology (Proj. MAC), Cambridge, Mass, 02139, Feb. 1970. http://dx.doi.org/10.1007/978-3-663-02723-2


Full Text


intern file

Sonstige Links