A memory learning framework for effective image retrieval

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


J. Han , K. N. Ngan , M. Li and H.-J. Zhang: A memory learning framework for effective image retrieval. IEEE Trans. Image Process., vol. 14, no. 4, pp. 511-524, 2005




Most current content-based image retrieval systems are still incapable of providing users with their desired results. The major difficulty lies in the gap between low-level image features and high-level image semantics. To address the problem, this study reports a framework for effective image retrieval by employing a novel idea of memory learning. It forms a knowledge memory model to store the semantic information by simply accumulating user-provided interactions. A learning strategy is then applied to predict the semantic relationships among images according to the memorized knowledge. Image queries are finally performed based on a seamless combination of low-level features and learned semantics. One important advantage of our framework is its ability to efficiently annotate images and also propagate the keyword annotation from the labeled images to unlabeled images. The presented algorithm has been integrated into a practical image retrieval system. Experiments on a collection of 10 000 general-purpose images demonstrate the effectiveness of the proposed framework.

Extended Abstract


author={J. Han and K. N. Ngan and Mingjing Li and Hong-Jiang Zhang},
journal={IEEE Transactions on Image Processing},
title={A memory learning framework for effective image retrieval},
keywords={image retrieval;learning (artificial intelligence);content-based image retrieval system;high-level image semantics;image query;memory learning framework;Content based retrieval;Feature extraction;Feedback;Image databases;Image retrieval;Image segmentation;Information retrieval;Machine learning;Radio frequency;Shape measurement;Annotation propagation;image retrieval;memory learning;relevance feedback;semantics;Algorithms;Artificial Intelligence;Cluster Analysis;Computer Graphics;Computer Simulation;Database Management Systems;Databases, Factual;Documentation;Image Enhancement;Image Interpretation, Computer-Assisted;Information Storage and Retrieval;Natural Language Processing;Numerical Analysis, Computer-Assisted;Pattern Recognition, Automated;Reproducibility of Results;Sensitivity and Specificity;Signal Processing, Computer-Assisted;User-Computer Interface},
url={http://dx.doi.org/10.1109/TIP.2004.841205  http://de.evo-art.org/index.php?title=A_memory_learning_framework_for_effective_image_retrieval },

Used References

M. Flickner, H. Sawhney, and W. Niblack, " Query by image and video content: The QBIC system", IEEE Computer, vol. 28, no. 9, pp. 23-32, 1995 http://dx.doi.org/10.1109/2.410146

A. P. Penland, R. W. Picard, and S. Sclaroff, "Photobook: Content-based manipulation of image databases", Int. J. Comput. Vis., vol. 18, no. 3, pp. 233-254, 1996 [http://dx.doi.org/10.1007/BF00123143

W. Y. Ma and B. Manjunath, "NETRA: A toolbox for navigating large image databases", Multimedia Syst., vol. 7, no. 3, pp. 184-198, 1999 http://dx.doi.org/10.1007/s005300050121

J. Z. Wang, J. Li, and G. Wiederhold, "SIMPLIcity: Semantics-sensitive integrated matching for picture libraries", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 23, no. 9, pp. 947-963, 2001 http://dx.doi.org/10.1109/34.955109

A. Gaurav, T. V. Ashwin, and G. Sugata, "An image retrieval system with automatic query modification", IEEE Trans. Multimedia, vol. 4, no. 2, pp. 201-213, 2002 http://dx.doi.org/10.1109/TMM.2002.1017734

M. Li, Z. Chen, and H. Zhang, "Statistical correlation analysis in image retrieval", Pattern Recognit., vol. 35, pp. 2687-2693, 2002 http://dx.doi.org/10.1016/S0031-3203(01)00249-7

Z. Su, H. Zhang, S. Li, and S. Ma, "Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning", IEEE Trans. Image Process., vol. 12, no. 8, pp. 924-936, 2003 http://dx.doi.org/10.1109/TIP.2003.815254

J. J. Rocchio, G. Salton,, "Relevance feedback in information", The SMART Retrieval Systems: Experiments in Automatic Document processing, pp. 313-323, 1971, Prentice-Hall

Y. Rui, T. S. Huang, and S. Mehrotra, " Relevance feedback: A powerful tool in interactive content-based image retrieval ", IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 5, pp. 644-655, 1998 http://dx.doi.org/10.1109/76.718510

I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas, and P. N. Yianilos, "The Bayesian image retrieval system, PicHunter: Theory, implementation, and psychophysical experiments", IEEE Trans. Image Process., vol. 9, no. 1, pp. 20-37, 2000 http://dx.doi.org/10.1109/83.817596

T. P. Minka and R. W. Picard, "Interactive learning with a &ldquo,society of models&rdquo," Proc. IEEE Conf. Computer Vision Pattern Recognition, pp. 447-452, 1996 http://dx.doi.org/10.1109/CVPR.1996.517110

Y. Rui and T. S. Huang, "Optimizing learning in image retrieval ", Proc. IEEE Conf. Computer Vision Pattern Recognition, pp. 236-243, 2000 http://dx.doi.org/10.1109/CVPR.2000.855825

X. S. Zhou and T. S. Huang, "Small sample learning during multimedia retrieval using BiasMap", Proc. IEEE Conf. Computer Vision Pattern Recognition, pp. 8-14, 2001 http://dx.doi.org/10.1109/CVPR.2001.990450

S. Tong and E. Chang, "Support vector machine active learning for image retrieval", Proc. ACM Int. Conf. Multimedia, pp. 107-118, 2001 http://dx.doi.org/10.1145/500156.500159

H. Zhang and Z. Su, "Relevance feedback in CBIR", Int. Workshop on Visual Databases, 2002 http://dx.doi.org/10.1007/978-0-387-35592-4_3

X. S. Zhou and T. S. Huang, "Relevance feedback in image retrieval: A comprehensive review", Multimedia Syst., vol. 8, pp. 536-544, 2003 http://dx.doi.org/10.1007/s00530-002-0070-3

S. D. MacArthur, C. E. Brodley, and C. R. Shyu, "Relevance feedback decision trees in content-based image retrieval", Proc. IEEE Workshop Content-Based Access of Image and Video Libraries, pp. 68-72, 2000 http://dx.doi.org/10.1109/IVL.2000.853842

K. Tieu and P. Viola, "Boosting image retrieval", Proc. IEEE Conf. Computer Vision Pattern Recognition, pp. 228-235, 2000 http://dx.doi.org/10.1109/CVPR.2000.855824

E. Chang, B. Li, G. Wu, and K. S. Goh, "Statistical learning for effective visual information retrieval", Proc. IEEE Conf. Image Processing, pp. III-609-III-612, 2003 http://dx.doi.org/10.1109/ICIP.2003.1247318

C. Lee, W. Y. Ma, and H. Zhang, "Information embedding based on user',s relevance feedback for image retrieval", SPIE Conf. Multimedia Storage and Archiving Systems IV, 1999 http://dx.doi.org/10.1117/12.360434

I. Bartolini, P. Ciaccia, and F. Waas, "FeedbackBypass: A new approach to interactive similarity query processing", Proc. Int. Conf. Very Large Data Bases , pp. 201-210, 2001

F. Fournier and M. Card, "Long-term similarity learning in content-based image retrieval", Proc. IEEE Conf. Image Processing, pp. 22-25, 2002 http://dx.doi.org/10.1109/ICIP.2002.1038055

X. He, O. King, W. Y. Ma, M. Li, and H. Zhang, "Learning a semantic space from user',s relevance feedback for image retrieval", IEEE Trans. Circuits Syst. Video Technol. , vol. 13, no. 1, pp. 39-48, 2003 http://dx.doi.org/10.1109/TCSVT.2002.808087

D. Goldberg, D. Nichols, B. Oki, and D. Terry, "Using collaborative filtering to weave an information tapestry", Commun. ACM, vol. 35, no. 12, pp. 218-277, 1992 http://dx.doi.org/10.1145/138859.138867

A. Kohrs and B. Merialdo, " Improving collaborative filtering with multimedia indexing techniques to create user-adapting web sits", Proc. ACM Int. Conf. Multimedia, pp. 27-36, 1999

A. Kohrs and B. Merialdo, "Clustering for collaborative filtering applications", Int. Conf. Computational Intelligence for Modeling Control and Automation , 1999

J. M. Kleinberg, "Authoritative sources in a hyperlinked environment", J. ACM, vol. 46, no. 5, pp. 604-632, 1999 http://dx.doi.org/10.1145/324133.324140

R. Lempel and A. Soffer, "PicASHOW: Pictorial authority search by hyperlinks on the web", Proc. 10th Int. WWW Conf., pp. 438-448, 2001 http://dx.doi.org/10.1145/371920.372098

R. W. Picard and T. P. Minka, "Vision texture for annotation", Multimedia Syst., vol. 3, pp. 3-14, 1995 http://dx.doi.org/10.1007/BF01236575

E. Saber and A. M. Tekalp, "Region-based affine shape matching for automatic image annotation and query-by-example", J. Vis. Commun. Image Rep., vol. 8, no. 1, pp. 3-20, 1997 http://dx.doi.org/10.1006/jvci.1997.0344

W. Liu, S. Dumais, Y. Sun, and H. Zhang, "Semi-automatic image annotation", Proc. Conf. Human-Computer Interaction, pp. 326-333, 2001

C. Zhang and T. Chen, "An active learning framework for content-based information retrieval", IEEE Trans. Multimedia , vol. 4, no. 2, pp. 260-268, 2002 http://dx.doi.org/10.1109/TMM.2002.1017738

E. Chang, K. Goh, G. Sychay, and G. Wu, "CBSA: Content-based soft annotation for multimodal image retrieval using bayes point machines", IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 1, pp. 26-38, 2003 http://dx.doi.org/10.1109/TCSVT.2002.808079

H. Zhang, W. Liu, and C. Hu, "iFind-a system for semantics and feature based image retrieval over internet", Proc. ACM Int. Conf. Multimedia, pp. 477-478, 2000 http://dx.doi.org/10.1145/354384.376392

V. Vapnik, The Nature of Statistical Learning Theory, 1995, Springer http://dx.doi.org/10.1007/978-1-4757-2440-0

J. Huang, S. R. Kumar, M. Mitra, W. Zhu, and R. Zabih, "Image indexing using color correlograms", Proc. IEEE Conf. Computer Vision Pattern Recognition , pp. 762-768, 1997 http://dx.doi.org/10.1109/CVPR.1997.609412

J. Li and J. Z. Wang, "Automatic linguistic indexing of pictures by a statistical modeling approach", IEEE Trans. Pattern Anal. Mach. Intell., vol. 25 , no. 9, pp. 1075-1088, 2003 http://dx.doi.org/10.1109/TPAMI.2003.1227984

K. Barnard, P. Duygulu, D. Forsyth, N. D. Freitas, D. M. Blei, and M. I. Jordan, "Matching words and pictures", J. Mach. Learn. Res., vol. 3, pp. 1107-1135, 2003 http://dx.doi.org/10.1162/153244303322533214


Full Text


internal file

Sonstige Links