A novel evolutionary approach for optimizing content-based image indexing algorithms

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


M. Saadatmand-Tarzjan and H. Moghaddam: A novel evolutionary approach for optimizing content-based image indexing algorithms. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(1):139-153, feb. 2007.




Optimization of content-based image indexing and retrieval (CBIR) algorithms is a complicated and time-consuming task since each time a parameter of the indexing algorithm is changed, all images in the database should be indexed again. In this paper, a novel evolutionary method called evolutionary group algorithm (EGA) is proposed for complicated time-consuming optimization problems such as finding optimal parameters of content-based image indexing algorithms. In the new evolutionary algorithm, the image database is partitioned into several smaller subsets, and each subset is used by an updating process as training patterns for each chromosome during evolution. This is in contrast to genetic algorithms that use the whole database as training patterns for evolution. Additionally, for each chromosome, a parameter called age is defined that implies the progress of the updating process. Similarly, the genes of the proposed chromosomes are divided into two categories: evolutionary genes that participate to evolution and history genes that save previous states of the updating process. Furthermore, a new fitness function is defined which evaluates the fitness of the chromosomes of the current population with different ages in each generation. We used EGA to optimize the quantization thresholds of the wavelet-correlogram algorithm for CBIR. The optimal quantization thresholds computed by EGA improved significantly all the evaluation measures including average precision, average weighted precision, average recall, and average rank for the wavelet-correlogram method

Extended Abstract


author={M. Saadatmand-Tarzjan and H. A. Moghaddam},
journal={IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)},
title={A Novel Evolutionary Approach for Optimizing Content-Based Image Indexing Algorithms},
keywords={content-based retrieval;database indexing;genetic algorithms;image retrieval;visual databases;wavelet transforms;content-based image indexing algorithm;content-based image retrieval algorithm;database indexing;evolutionary group algorithm;fitness function;genetic algorithm;image database;image quantization;time-consuming optimization problem;wavelet-correlogram algorithm;Biological cells;Content based retrieval;Evolutionary computation;Image databases;Image retrieval;Indexing;Information retrieval;Optimization methods;Partitioning algorithms;Quantization;Content-based image indexing and retrieval (CBIR);evolutionary algorithms (EAs);evolutionary group algorithm (EGA);genetic algorithms (GAs);global optimization;wavelet correlogram;Algorithms;Artificial Intelligence;Biomimetics;Database Management Systems;Databases, Factual;Documentation;Evolution;Image Enhancement;Image Interpretation, Computer-Assisted;Information Storage and Retrieval;Models, Genetic;Pattern Recognition, Automated},
url={http://dx.doi.org/10.1109/TSMCB.2006.880137 http://profdoc.um.ac.ir/pubs_files/p11030308.pdf http://de.evo-art.org/index.php?title=A_novel_evolutionary_approach_for_optimizing_content-based_image_indexing_algorithms },

Used References

"Special issue on digital libraries", IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8, 1996

A. W. M. Smeulders , M. Worring , S. Santini , A. Gupta and R. Jain, "Content-based image retrieval at the end of early years", IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 12, pp. 1340-1380, 2000 http://dx.doi.org/10.1109/34.895972

V. N. Gudivada and V. Raghavan, "Content based image retrieval systems", IEEE Comput., vol. 28, no. 9, pp. 18-22, 1995http://dx.doi.org/10.1109/2.410145

M. J. Swain and D. H. Ballard, "Color indexing", Int. J. Comput. Vis., vol. 7, no. 1, pp. 11-32, 1991 http://dx.doi.org/10.1007/BF00130487

J. Huang , S. R. Kumar , M. Mitra , W.-J. Zhu and R. Zabih, "Image indexing using color correlograms", Proc. IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recognit., pp. 762-768, 1997 http://dx.doi.org/10.1109/CVPR.1997.609412

M. Stricker and A. Dimai, "Spectral covariance and fuzzy regions for image indexing", Mach. Vis. Appl., vol. 10, no. 2, pp. 66-73, 1997 http://dx.doi.org/10.1007/s001380050060

F. Mahmoudi , J. Shanbehzadeh , A. M. Eftekhari-Moghadam and H. Soltanian-Zadeh, "Image retrieval based on shape similarity by edge orientation autocorrelogram", Pattern Recognit., vol. 36, no. 8, pp. 1725-1736, 2003 http://dx.doi.org/10.1016/S0031-3203(03)00010-4

R. Schettini , G. Ciocca and S. Zuffi, R. Luo and L. MacDonald, "A survey on methods for color image indexing and retrieval in image databases" in Color Imaging Science: Exploiting Digital Media, 2001, Wiley

M. Flickner , H. Sawhney , W. Niblack , J. Ashley , Q. Huang , B. Dom , M. Gorkani , J. Hafner , D. Lee , D. Petkovic , D. Steele and P. Yanker, "Query by image and video content: The QBIC system", IEEE Comput., vol. 28, no. 9, pp. 23-32, 1995 http://dx.doi.org/10.1109/2.410146

V. E. Ogle and M. Stonebraker, "Chabot: Retrieval from a relational database of images", IEEE Comput., vol. 28, no. 9, pp. 40-48, 1995 http://dx.doi.org/10.1109/2.410150

A. Pentland , R. Picard and S. Sclaroff, "Photobook: Content-based manipulation of image databases", Int. J. Comput. Vis., vol. 18, no. 3, pp. 233-254, 1996 http://dx.doi.org/10.1007/BF00123143

C. Carson , M. Thomas , S. Blongie , J. M. Hellerstein and J. Malik, "Blobworld: A system for region-based image indexing and retrieval", Proc. 3rd Int. Conf. Visual Inf. Syst., pp. 509-516, 1999

A. D. Bimbo , M. Mugnaini , P. Pala and F. Turco, "Visual querying by color perceptive regions", Pattern Recognit., vol. 31, no. 9, pp. 1241-1253, 1998 http://dx.doi.org/10.1016/S0031-3203(97)00164-7

A. K. Jain and A. Vailaya, "Shape-based retrieval: A case study with trademark image database", Pattern Recognit., vol. 31, no. 9, pp. 1369-1390, 1998 http://dx.doi.org/10.1016/S0031-3203(97)00131-3

S. Abbasi , F. Mokhtarian and J. Kittler, "Curvature scale space in shape similarity retrieval", Multimedia Syst., vol. 7, no. 6, pp. 467-476, 1999 http://dx.doi.org/10.1007/s005300050147

L. Balmelli and A. Mojsilovic, "Wavelet domain features for texture description, classification and replicability analysis" in Wavelets in Signal and Image Analysis: From Theory to Practice, 2001, Kluwer

J. Z. Wang , J. Li and G. Wiederhold, "SIMPLIcity: Semantics-sensitive integrated matching for picture libraries", IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 9, pp. 947-963, 2001 http://dx.doi.org/10.1109/34.955109

H. A. Moghaddam , T. T. Khajoie , A. H. Rouhi and M. Saadatmand-T., "Wavelet correlogram: A new approach for image indexing and retrieval", Pattern Recognit., vol. 38, no. 12, pp. 2506-2518, 2005 http://dx.doi.org/10.1016/j.patcog.2005.05.010

M. K. Mandal , T. Aboulnasr and S. Panchanathan, "Fast wavelet histogram techniques for image indexing", Comput. Vis. Image Underst., vol. 75, no. 1/2, pp. 99-110, 1999 http://dx.doi.org/10.1006/cviu.1999.0766

J. Z. Wang , G. Wiederhold , O. Firschein and S. X. Wei, "Content-based image indexing and searching using Daubechies\' wavelets", Int. J. Digit. Libr., vol. 1, no. 4, pp. 311-328, 1997 http://dx.doi.org/10.1007/s007990050026

G.-D. Guo , A. K. Jain , W.-Y. Ma and H.-J. Zhang, "Learning similarity measure for natural image retrieval with relevance feedback", IEEE Trans. Neural Netw., vol. 13, no. 4, pp. 811-820, 2002 http://dx.doi.org/10.1109/TNN.2002.1021882

Y. Rui , T. S. Huang , M. Ortega and S. Mehrotra, "Relevance feedback: A powerful tool for interactive content-based image retrieval", IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 5, pp. 644-655, 1998 http://dx.doi.org/10.1109/76.718510

J. R. Smith and C. S. Li, "Image-classification and querying using composite region templates", Comput. Vis. Image Underst., vol. 75, no. 1/2, pp. 165-174, 1999 http://dx.doi.org/10.1006/cviu.1999.0771

O. Nelles, Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models, 2001, Springer-Verlag

S. Haykin, Neural Networks: A Comprehensive Foundation, 1999, Prentice-Hall

F. Tian and L. Wang, "Chaotic simulated annealing with augmented Lagrange for solving combinatorial optimization problems", Proc. 26th IEEE Indust. Electron. Soc. Annu. Conf., vol. 4, pp. 2722-2725, 2000 http://dx.doi.org/10.1109/IECON.2000.972428

T. Bäck and H. P. Schwefel, "An overview of evolutionary algorithm for parameter optimization", IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 1-23, 1993 http://dx.doi.org/10.1162/evco.1993.1.1.1

B.-T. Zhang and J.-J. Kim, "Comparison of selection methods for evolutionary optimization", Evol. Optim., vol. 2, no. 1, pp. 55-70, 2000

T. Stützle and M. Dorigo, K. Miettinen , M. Makela , P. Neittaanmaki and J. Periaux, "ACO algorithms for the traveling salesman problem" in Evolutionary Algorithms in Engineering and Computer Science, 1999, Wiley

Á. E. Eiben , R. Hinterding and Z. Michalewicz, "Parameter control in evolutionary algorithms", IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 124-141, 1998http://dx.doi.org/10.1109/4235.771166

R. Smith, S. Forrest, "Adaptively resizing populations: An algorithm and analysis", Proc. 5th Int. Conf. Genetic Algorithms, pp. 653, 1993

J. Arabas , Z. Michalewicz and J. Mulawka, "GAVaPS—A genetic algorithm with varying population size", Proc. 2nd IEEE Conf. Evol. Comput., pp. 73-78, 1994 http://dx.doi.org/10.1109/ICEC.1994.350039

M. Srinivas and L. M. Patnaik, "Adaptive probabilities of crossover and mutation in genetic algorithms", IEEE Trans. Syst., Man, Cybern., vol. 24, no. 4, pp. 17-26, 1994 http://dx.doi.org/10.1109/21.286385

E. Zitzler , K. Deb and L. Thiele, "Comparison of multiobjective evolutionary algorithms: Empirical results", Evol. Comput., vol. 8, no. 2, pp. 173-195, 2000 http://dx.doi.org/10.1162/106365600568202

K. Deb , A. Pratap , S. Agarwal and T. Meyarivan, "A fast and elitism multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, 2002 http://dx.doi.org/10.1109/4235.996017

D. Whitley, "The GENITOR algorithm and selective pressure", Proc. 3rd Int. Conf. Genetic Algorithms, pp. 116-121, 1989

Z. B. Xu , K. S. Leung , Y. Liang and Y. Leung, "Efficiency speed-up strategies for evolutionary computational: Fundamentals and fast-GA", Appl. Math. Comput., vol. 142, pp. 341-388, 2003 http://dx.doi.org/10.1016/S0096-3003(02)00309-0

G. C. Williams, Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought, 1966, Princeton Univ. Press

G. C. Williams, "Pleiotropy, natural selection, and the evolution of senescence", Evolution, vol. 11, no. 4, pp. 398-411, 1957 http://dx.doi.org/10.2307/2406060

H. A. Moghaddam , T. T. Khajoie and A. H. Rouhi, "A new algorithm for image indexing and retrieval using wavelet correlogram", Proc. IEEE Conf. Image Process, vol. 2, pp. 497-500, 2003 http://dx.doi.org/10.1109/ICIP.2003.1247290

S. Theodoridis and K. Koutroumbas, Pattern Recognition, 2003, Academic http://dx.doi.org/10.1016/B0-12-227240-4/00132-5

A. D. Narasimhalu , M. S. Kankanhalli and J. Wu, "Benchmarking multimedia databases", Multimedia Tools Appl., vol. 4, no. 3, pp. 333-356, 1997 http://dx.doi.org/10.1023/A:1009641123797

D. Whitley, "A genetic algorithm tutorial", Statist. Comput., vol. 4, no. 2, pp. 65-85, 1994 http://dx.doi.org/10.1007/BF00175354

G. Rudolph, "Convergence analysis of canonical genetic algorithms", IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 96-101, 1994 http://dx.doi.org/10.1109/72.265964

Z. Suna , G. Bebisa and R. Millerb, "Object detection using feature subset selection", Pattern Recognit., vol. 37, no. 11, pp. 2165-2176, 2004 http://dx.doi.org/10.1016/j.patcog.2004.03.013

L. S. Oliveira and R. Sabourin, "A methodology for feature selection using multiobjective genetic algorithms for handwritten digit string recognition", Int. J. Pattern Recognit. Artif. Intell., vol. 17, no. 6, pp. 903-929, 2003 http://dx.doi.org/10.1142/S021800140300271X

A. A. Freitas, A. Ghosh and S. Tsutsui, "A survey of evolutionary algorithms for data mining and knowledge discovery" in Adv. Evol. Comput., pp. 819-845, 2002, Springer-Verlag

P. Zhang , B. Verma and K. Kumar, "Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection", Pattern Recognit. Lett., vol. 26, no. 7, pp. 909-919, 2005 http://dx.doi.org/10.1016/j.patrec.2004.09.053

M. Saadatmand-T. and H. A. Moghaddam, "Enhanced wavelet correlogram methods for image indexing and retrieval", Proc. IEEE Int. Conf. Image Process., vol. 1, pp. 541-544, 2005 http://dx.doi.org/10.1109/ICIP.2005.1529807

G. Pass , R. Zabih and J. Miller, "Comparing images using color coherence vectors", Proc. 4th ACM Multimedia Conf., pp. 65-73, 1996 http://dx.doi.org/10.1145/244130.244148

M. K. Mandal , T. Aboulnasr and S. Panchanathan, "Image indexing using moments and wavelets", IEEE Trans. Consumer Electron., vol. 42, no. 3, pp. 557-565, 1996 http://dx.doi.org/10.1109/30.536156

M. A. Lee and H. Takagi, "Embedding a priori knowledge into an integrated fuzzy system design method based on genetic algorithms", Proc. 5th IFSA World Cong., vol. II, pp. 1293-1296, 1993

D. E. Goldberg, Genetic and evolutionary algorithms in the real world, 1999

A. P. Engelbrecht, Computational Intelligence, 2002, Wiley


Full Text


internal file

Sonstige Links