Aesthetic Classification and Sorting Based on Image Compression

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Romero, Juan; Machado, Penousal; Carballal, Adrian; Osorio, Olga: Aesthetic Classification and Sorting Based on Image Compression. In: EvoMUSART 2011, S. 394-403.



One of the problems in evolutionary art is the lack of robust fitness functions. This work explores the use of image compression estimates to predict the aesthetic merit of images. The metrics proposed estimate the complexity of an image by means of JPEG and Fractal compression. The success rate achieved is 72.43% in aesthetic classification tasks of a problem belonging to the state of the art. Finally, the behavior of the system is shown in an image sorting task based on aesthetic criteria.

Extended Abstract


booktitle={Applications of Evolutionary Computation},
series={Lecture Notes in Computer Science},
editor={Di Chio, Cecilia and Brabazon, Anthony and Di Caro, GianniA. and Drechsler, Rolf and Farooq, Muddassar and Grahl, Jörn and Greenfield, Gary and Prins, Christian and Romero, Juan and Squillero, Giovanni and Tarantino, Ernesto and Tettamanzi, AndreaG.B. and Urquhart, Neil and Uyar, A.Şima},
title={Aesthetic Classification and Sorting Based on Image Compression},
url={ },
publisher={Springer Berlin Heidelberg},
author={Romero, Juan and Machado, Penousal and Carballal, Adrian and Osorio, Olga},

Used References

Arnheim, R.: Art and Visual Perception, a psychology of the creative eye. Faber and Faber, London (1956)

Birkhoff, G.D.: Aesthetic Measure. Harvard University Press, Cambridge (1932)

Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), software available at

Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006)

Eysenck, H.J.: The empirical determination of an aesthetic formula. Psychological Review 48, 83–92 (1941)

Eysenck, H.J.: The experimental study of the ’Good Gestalt’ - A new approach. Psychological Review 49, 344–363 (1942)

Fisher, Y. (ed.): Fractal Image Compression: Theory and Application. Springer, London (1995)

Graves, M.: Design Judgment Test. The Psychological Corporation, New York (1948)

Greenfield, G., Machado, P.: Simulating artist and critic dynamics - an agent-based application of an evolutionary art system. In: Dourado, A., Rosa, A.C., Madani, K. (eds.) IJCCI, pp. 190–197. INSTICC Press (2009)

Ke, Y., Tang, X., Jing, F.: The Design of High-Level Features for Photo Quality Assessment. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 419–426 (2006)

Luo, Y., Tang, X.: Photo and video quality evaluation: Focusing on the subject. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 386–399. Springer, Heidelberg (2008)

Machado, P., Cardoso, A.: Computing aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–229. Springer, Heidelberg (1998)

Machado, P., Romero, J., Manaris, B.: Experiments in Computational Aesthetics. In: The Art of Artificicial Evolution. Springer, Heidelberg (2007)

Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics: An iterative approach to stylistic change in evolutionary art. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 381–415. Springer, Heidelberg (2007)

Machado, P., Romero, J., Santos, A., Cardoso, A., Manaris, B.: Adaptive critics for evolutionary artists. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 435–444. Springer, Heidelberg (2004)

Meier, N.C.: Art in human affairs. McGraw-Hill, New York (1942)

Moles, A.: Theorie de l’information et perception esthetique, Denoel (1958)

Tong, H., Li, M., Zhang, H., He, J., Zhang, C.: Classification of Digital Photos Taken by Photographers or Home Users. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM (1). LNCS, vol. 3332, pp. 198–205. Springer, Heidelberg (2004)

Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with java implementations. SIGMOD Rec. 31(1), 76–77 (2002)

Wong, L., Low, K.: Saliency-enhanced image aesthetics class prediction. In: ICIP 2009, pp. 997–1000. IEEE, Los Alamitos (2009)

Zell, A., Mamier, G., Vogt, M., Mache, N., Hübner, R., Döring, S., Herrmann, K.U., Soyez, T., Schmalzl, M., Sommer, T., et al.: SNNS: Stuttgart Neural Network Simulator User Manual, version 4.2. Tech. Rep. 3/92, University of Stuttgart, Stuttgart (2003)


Full Text

intern file

Sonstige Links