An Information-Theoretic Framework for Image Complexity
Inhaltsverzeichnis
Reference
Jaume Rigau, Miquel Feixas, Mateu Sbert: An Information-Theoretic Framework for Image Complexity. In: László Neumann, Mateu Sbert, Bruce Gooch, Werner Purgathofer (Eds.): Eurographics Workshop on Computational Aesthetics. 2005. 177-184
DOI
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/177-184
Abstract
In this paper, we introduce a new information-theoretic approach to study the complexity of an image. The new framework we present here is based on considering the information channel that goes from the histogram to the regions of the partitioned image, maximizing the mutual information. Image complexity has been related to the entropy of the image intensity histogram. This disregards the spatial distribution of pixels, as well as the fact that a complexity measure must take into account at what level one wants to describe an object. We define the complexity by using two measures which take into account the level at which the image is considered. One is the number of partitioning regions needed to extract a given ratio of information from the image. The other is the compositional complexity given by the Jensen-Shannon divergence of the partitioned image.
Extended Abstract
Bibtex
@inproceedings{Rigau:2005:IFI:2381219.2381244, author = {Rigau, J. and Feixas, M. and Sbert, M.}, title = {An Information-theoretic Framework for Image Complexity}, booktitle = {Proceedings of the First Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging}, series = {Computational Aesthetics'05}, year = {2005}, isbn = {3-905673-27-4}, location = {Girona, Spain}, pages = {177--184}, numpages = {8}, url = {http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/177-184 http://de.evo-art.org/index.php?title=An_Information-Theoretic_Framework_for_Image_Complexity }, doi = {10.2312/COMPAESTH/COMPAESTH05/177-184}, acmid = {2381244}, publisher = {Eurographics Association}, address = {Aire-la-Ville, Switzerland, Switzerland}, }
Used References
Dana Harry Ballard , Christopher M. Brown, Computer Vision, Prentice Hall Professional Technical Reference, 1982 http://dl.acm.org/citation.cfm?id=578131&CFID=588525319&CFTOKEN=29804931
BENSE M.: Aesthetica. Einführung in die neue Aesthetik. Agis-Verlag, Baden-Baden, Germany, 1965.
BIRKHOFF G. D.: Aesthetic Measure. Harvard University Press, Cambridge (MA), USA, 1933.
BIRKHOFF G. D.: Collected Mathematical Papers. American Mathematical Society, New York (NY), USA, 1950.
BERNAOLA P., OLIVER J. L., ROMÁN R.: Decomposition of DNA sequence complexity. Physical Review Letters 83, 16 (October 1999), 3336-3339.
BADII R., POLITI A.: Complexity. Hierarchical Structures and Scaling in Physics. Cambridge University Press, 1997.
J. Burbea , C. Rao, On the convexity of some divergence measures based on entropy functions, IEEE Transactions on Information Theory, v.28 n.3, p.489-495, May 1982 http://dx.doi.org/10.1109/TIT.1982.1056497
Thomas M. Cover , Joy A. Thomas, Elements of information theory, Wiley-Interscience, New York, NY, 1991 http://dl.acm.org/citation.cfm?id=129837&CFID=588525319&CFTOKEN=29804931
FELDMAN D. P., CRUTCHFIELD J. P.: Discovering Noncritical Organization: Statistical Mechanical, Information Theoreticand Computational Views of Patterns in One-Dimensional Spin Systems. Working Paper 98-04-026, Santa Fe Institute, Santa Fe (NM), USA, April 1998.
GRASSBERGER P.: Toward a quantitative theory of self-generated complexity. International Journal of Theoretical Physics 25, 9 (1986), 907-938.
Rafael C. Gonzalez , Richard E. Woods, Digital Image Processing, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2001 http://dl.acm.org/citation.cfm?id=559707&CFID=588525319&CFTOKEN=29804931
John E. Hopcroft , Jeffrey D. Ullman, Introduction To Automata Theory, Languages, And Computation, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1990 http://dl.acm.org/citation.cfm?id=574901&CFID=588525319&CFTOKEN=29804931
S. R. Kulkarni , G. Lugosi , S. S. Venkatesh, Learning pattern classification-a survey, IEEE Transactions on Information Theory, v.44 n.6, p.2178-2206, October 1998 http://dx.doi.org/10.1109/18.720536
LI W.: On the relationship between complexity and entropy for markov chains and regular languages. Complex Systems 5, 4 (1991), 381-399.
Wentian Li, The complexity of DNA, Complexity, v.3 n.2, p.33-37, Nov./Dec. 1997 http://dx.doi.org/10.1002/(SICI)1099-0526(199711/12)3:2%3C33::AID-CPLX7%3E3.3.CO;2-2
LLOYD S.: Measures of complexity: a nonexhaustive list, 2002.
Penousal Machado , Amílcar Cardoso, Computing Aethetics, Proceedings of the 14th Brazilian Symposium on Artificial Intelligence: Advances in Artificial Intelligence, p.219-228, November 04-06, 1998 http://dl.acm.org/citation.cfm?id=669151&CFID=588525319&CFTOKEN=29804931
MOLES A.: Art et ordinateur. Casterman, Tournay, Belgium, 1971.
PETERS II R. A., STRICKLAND R. N.: Image complexity metrics for automatic target recognizers, October 1990. invited paper.
ROMÁN R., BERNAOLA P., OLIVER J. L.: Sequence compositional complexity of DNA through an entropic segmentation method. Physical Review Letters 80, 6 (February 1998), 1344-1347.
J. Rigau , M. Feixas , M. Sbert, An information-theoretic framework for image complexity, Proceedings of the First Eurographics conference on Computational Aesthetics in Graphics, Visualization and Imaging, May 18-20, 2005, Girona, Spain http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/177-184
SCHA R., BOD R.: Computationele esthetica. Informatie en Informatiebeleid 11, 1 (1993), 54-63.
I. K. Sethi , G. P. R. Sarvarayudu, Hierarchical Classifier Design Using Mutual Information, IEEE Transactions on Pattern Analysis and Machine Intelligence, v.4 n.4, p.441-445, April 1982 http://dx.doi.org/10.1109/TPAMI.1982.4767278
Links
Full Text
http://ima.udg.es/~rigau/Publications/Rigau05A.pdf
Sonstige Links
http://dl.acm.org/citation.cfm?id=2381219.2381244&coll=DL&dl=GUIDE&CFID=588525319&CFTOKEN=29804931