Automatic categorization of medical images for content-based retrieval and data mining
Inhaltsverzeichnis
Referenz
Thomas M. Lehmann,Mark O.Guld, Thomas Deselaers, Daniel Keysers,Henning Schubert, Klaus Spitzer, Hermann Ney and Berthold B. Wein: Automatic categorization of medical images for content-based retrieval and data mining. Computerized Medical Imaging and Graphics, Vol.29, No.2, pp.143-155, 2005
DOI
http://dx.doi.org/10.1016/j.compmedimag.2004.09.010
Abstract
Categorization of medical images means selecting the appropriate class for a given image out of a set of pre-defined categories. This is an important step for data mining and content-based image retrieval (CBIR). So far, published approaches are capable to distinguish up to 10 categories. In this paper, we evaluate automatic categorization into more than 80 categories describing the imaging modality and direction as well as the body part and biological system examined. Based on 6231 reference images from hospital routine, 85.5% correctness is obtained combining global texture features with scaled images. With a frequency of 97.7%, the correct class is within the best ten matches, which is sufficient for medical CBIR applications.
Extended Abstract
Bibtex
@article{ author = {Thomas M. Lehmann,Mark O.Guld, Thomas Deselaers, Daniel Keysers,Henning Schubert, Klaus Spitzer, Hermann Ney and Berthold B. Wein}, title = {Automatic categorization of medical images for content-based retrieval and data mining}, journal = {Computerized Medical Imaging and Graphics}, volume = {29}, number = {2}, pages = {143-155}, year = {2005}, doi={}, url={http://de.evo-art.org/index.php?title=Automatic_categorization_of_medical_images_for_content-based_retrieval_and_data_mining}, }
Used References
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R. Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Machine Intell. 2000;22:1349–1380. http://dx.doi.org/10.1109/34.895972
Hand, D., Manila, H., Smyth, P. Principles of data mining. MIT Press, Cambridge, MA; 2001.
Niblack, W., Barber, R., Equitz, W., Flickner, M., Yanker, P., Ashley, J. The QBIC-project-Querying images by content using color, texture and shape. Proc SPIE. 1993;1908:173–187. http://dx.doi.org/10.1117/12.143648
Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B. et al, Query by image and video content—The QBIC system. IEEE Comput. 1995;28:23–32. http://dx.doi.org/10.1109/2.410146
Müller H, Michoux N, Bandon D, Geissbuhler A, A review of content-based image retrieval systems in medical applications. Clinical benefits and future directions. Int J Med Inform 2004;73:1–23.
Tagare, H.D., Jaffe, C.C., Duncan, J. Medical image databases—a content-based retrieval approach. J Am Med Informat Assoc. 1997;4:184–198. http://dx.doi.org/10.1136/jamia.1997.0040184
Güld, M.O., Kohnen, M., Schubert, H., Wein, B.B., Lehman, T.M. Quality of DICOM header information for image categorization. Proc SPIE. 2002;4685:280–287. http://dx.doi.org/10.1117/12.467017
Lehmann, T.M., Wein, B.B., Dahmen, J., Bredno, J., Vogelsang, F., Kohnen, M. Content-based image retrieval in medical applications-A novel multi-step approach. Proc SPIE. 2000;3972:312–320. http://dx.doi.org/10.1117/12.373563
Long, L.R., Thoma, G.R. Landmarking and feature localization in spine x-rays. J Electronic Imaging. 2001;10:939–956. http://dx.doi.org/10.1117/1.1406503
Petrakis, G.M. Design and evaluation of spatial similarity approaches for image retrieval. Image Vision Comput. 2002;20:59–76. http://dx.doi.org/10.1016/S0262-8856(01)00077-4
Lehmann TM, Güld MO, Thies C, Fischer B, Spitzer K, Keysers D, Ney H, Kohnen M, Schubert H, Wein BB, Content-based image retrieval in medical applications. Meth Informat Med 2004;43(4):354–61.
Love, H.J., Antipov, I., Hersh, W., Smith, C.A., Mailhot, M. Automated semantic indexing of imaging reports to support retrieval of medical images in the multimedia electronic medical record. Meth Inform Med. 1999;38:303–307.
Orphanoudakis, S.C., Chornaki, C., Kostomanolakis, S. I2C—a system for the indexing, storage and retrieval of medical images by content. Med Informatics. 1994;19:109–122. http://dx.doi.org/10.3109/14639239409001378
El-Kwae, Y.E.A., Xu, H., Kabuka, M.R. Content-based retrieval in picture archiving and communication systems. IEEE Trans Knowledge Data Eng. 2000;13:70–81.
McG. Squire D, Müller W, Müller H, Raki J, Content-based query of image databases-Inspirations from text retrieval-Inverted files, Frequency-based weights and relevance feedback. Proceeding Scandinavian Conference on Image Analysis, Kangerlussuaq, Greenland; 1999. p. 143–9.
Chu, W.W., Hsu, C.C., Cardenas, A.F., Taira, R.K. Knowledge-based image retrieval with spatial and temporal constructs. IEEE Trans Knowledge Data Eng. 1998;10:872–888. http://dx.doi.org/10.1109/69.738355
Petrakis, E., Faloutsos, C., Lin, K.I.D. Imagemap—an image indexing method based on spatial similarity. IEEE Trans Knowledge Data Eng. 2002;14:979–987. http://dx.doi.org/10.1109/TKDE.2002.1033768
Wang, J.Z., Li, J., Wiederhold, G. SIMPLIcity-Semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Machine Intell. 2001;23:947–963. http://dx.doi.org/10.1109/34.955109
Carson, C., Belongie, S., Greenspan, H., Malik, J. Blobworld-Image segmentation using expectation-maximization and its application to image querying. IEEE Trans Pattern Anal Machine Intell. 2002;24:1026–1038. http://dx.doi.org/10.1109/TPAMI.2002.1023800
Barnard K, Duygulu P, Forsyth D. Modeling the statistics of image features and associated text. Proceedings document recognition and retrieval; 2002.
Jain, A.K., Duin, R.P.W., Mao, J. Statistical pattern recognition—a review. IEEE Trans Pattern Anal Machine Intell. 2000;22:4–36. http://dx.doi.org/10.1109/34.824819
Pietka, E., Huang, H.K. Orientation correction for chest images. J Digital Imaging. 1992;5:185–189. http://dx.doi.org/10.1007/BF03167768
Boone, J.M., Seshagiri, S., Steiner, R.M. Recognition of chest radiograph orientation for picture archiving and communications systems display using neural networks. J Digital Imaging. 1992;5:190–193. http://dx.doi.org/10.1007/BF03167769
Lehmann, T.M., Güld, M.O., Keysers, D., Schubert, H., Kohnen, M., Wein, B.B. Determining the view position of chest radiographs. J Digital Imaging. 2003;16:280–291. http://dx.doi.org/10.1007/s10278-003-1655-x
Pinhas A, Greenspan H. A continuous and probabilistic framework for medical image representation and categorization. Proc SPIE. 2003;5371:230–8.
Keysers, D., Dahmen, J., Ney, H., Wein, B.B., Lehmann, T.M. Statistical framework for model-based image retrieval in medical applications. J Electronic Imaging. 2003;12:59–68. http://dx.doi.org/10.1117/1.1525790
Lehmann, T.M., Schubert, H., Keysers, D., Kohnen, M., Wein, B.B. The IRMA code for unique classification of medical images. Proc SPIE. 2003;5033:109–117. http://dx.doi.org/10.1117/12.481942
Haralick, R.M., Shanmugam, Dinstein, I. Textural features for image classification. IEEE Trans Syst, Man, Cybernetics. 1973;SMC-3:610–621. http://dx.doi.org/10.1109/TSMC.1973.4309314
Tamura, H., Mori, S., Yamawaki, T. Textural features corresponding to visual perception. IEEE Trans Syst, Man, Cybernetics. 1978;SMC-8:460–472. http://dx.doi.org/10.1109/TSMC.1978.4309999
Puzicha, J., Rubner, Y., Tomasi, C., Buhmann, J. Empirical evaluation of dissimilarity measures for color and texture. Proc Int Conf Comput Vision. 1999;2:1165–1173.
Castelli, V., Bergman, L.D., Kontoyiannis, I., Li, C.S., Robinson, J.T., Turek, J.J. Progressive search and retrieval in large image archives. IBM J Res Dev. 1998;42:253–268. http://dx.doi.org/10.1147/rd.422.0253
Ngo, C.W., Pong, T.C., Chin, R.T. Exploiting image indexing techniques in DCT domain. Proceedings IAPR International workshop on multimedia information analysis and retrieval. 1998;:196–206.
Zhou, X.S., Huang, T.S. Edge-based structural features for content-based image retrieval. Pattern Recogn Lett. 2001;22:457–468. http://dx.doi.org/10.1016/S0167-8655(00)00124-0
Simard, P.Y., LeCun, Y.A., Denker, J.S. Efficient pattern recognition using a new transformation distance. in: S. Hanson, J. Cowan, J. Giles (Eds.) Advanced Neural Information Process System. vol. 5. Morgan Kaufmann, San Mateo, CA; 1993.
Keysers, D., Gollan, C., Ney, H. Classification of Medical Images using Non-linear Distortion Models. Proceedings Bildverarbeitung für die Medizin. Springer, Berlin; 2004 (366--370).
Güld MO, Keysers D, Deselaers T, Leisten M, Schubert H, Ney H, Lehmann TM. Comparison of global features for categorization of medical images. Proc SPIE 2004;5371:211–22.
Lehmann, T.M., Goudarzi, S., Linnenbrügger, N.I., Keysers, D., Wein, B.B. Automatic localization and delineation of collimation fields in digital and film-based radiographs. Proc SPIE. 2002;4684:1215–1223. http://dx.doi.org/10.1117/12.467080
Links
Full Text