Automatic learning of multiple extended Boolean queries by multiobjective GA-P algorithms

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Referenz

O. Cordón, F. Moya, C. Zarco: Automatic learning of multiple extended Boolean queries by multiobjective GA-P algorithms. V. Loia, M. Nikravesh, L.A. Zadeh (Eds.), Fuzzy Logic and the Internet, Springer (2003)

DOI

http://dx.doi.org/10.1007/978-3-540-39988-9_3

Abstract

In this contribution, a new Inductive Query by Example process is proposed to automatically derive extended Boolean queries for fuzzy information retrieval systems from a set of relevant documents provided by a user. The novelty of our approach is that it is able to simultanously generate several queries with a different precision-recall tradeoff in a single run. To do so, it is based on an advanced. evolutionary algorithm, GA-P, specially designed to tackle with multiobjective problems by means of a Pareto-based multiobjective technique. The performance of the new proposal will be tested on the usual Cranfield collection and compared to the well-known Kraft et al.’s process.

Extended Abstract

Bibtex

@Inbook{Cordón2004,
author="Cord{\'o}n, O. and Moya, F. and Zarco, C.",
editor="Loia, Vincenzo and Nikravesh, Masoud and Zadeh, Lotfi A.",
title="Automatic Learning of Multiple Extended Boolean Queries by Multiobjective GA-P Algorithms",
bookTitle="Fuzzy Logic and the Internet",
year="2004",
publisher="Springer Berlin Heidelberg",
address="Berlin, Heidelberg",
pages="47--69",
isbn="978-3-540-39988-9",
doi="10.1007/978-3-540-39988-9_3",
url="http://dx.doi.org/10.1007/978-3-540-39988-9_3 http://de.evo-art.org/index.php?title=Automatic_learning_of_multiple_extended_Boolean_queries_by_multiobjective_GA-P_algorithms"

}

Used References

1. Bäck T (1996) Evolutionary algorithms in theory and practice. Oxford Univer-sity Press.MATH

2. Baeza-Yates R, Ribeiro-Neto, B (1999) Modern information retrieval. Addison-Wesley.

3. Bordogna G, Carrara P, Pasi G (1995) Fuzzy approaches to extend Boolean information retrieval. In: Bosc P, Kacprzyk J (eds) Fuzziness in database man-agement systems. Physica-Verlag, pp. 231–274.

4. Chankong V, Haimes Y Y (1983) Multiobjective decision making theory and methodology. North-Holland.MATH

5. Chen H, Shankarananrayanan G, She L, Iyer A (1998) Journal of the American Society for Information Science 49(8):693–705. http://dx.doi.org/10.1002/(SICI)1097-4571(199806)49%3A8%3C693%3A%3AAID-ASI4%3E3.0.CO%3B2-O

6. Coello C A, Van Veldhuizen D A, Lamant G B (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer Academic Publishers.MATH

7. Cordon O, Moya F, Zarco C (April, 1999) A brief study on the application of genetic algorithms to information retrieval (in spanish). In: Proc. Fourth In-ternational Society for Knowledge Organization (ISKO) Conference (E000N-SID’99), Granada, Spain, pp. 179–186.

8. Cordon O, Moya F, Zarco C (September, 1999) Learning queries for a fuzzy information retrieval system by means of GA-P techniques. In: Proc. EUSFLAT-ESTYLF Joint Conference, Palma de Mallorca, Spain, pp. 335–338.

9. Cordon O, Moya F, Zarco C (2000) Mathware & Soft Computing 7(2–3):309–322.MATH

10. Cordon O, Moya F, Zarco C (2002) Soft Computing 6(5):308–319. http://dx.doi.org/10.1007/s00500-002-0184-8

11. Cordon O, Herrera-Viedma E, Luque M (September, 2002) Evolutionary learn-ing of Boolean queries by multiobjective genetic programming. In: Proc. Seventh Parallel Problem Solving from Nature (PPSN-VII) International Conference, Granada, Spain, LNCS 2439. Springer, pp. 710–719. http://dx.doi.org/10.1007/3-540-45712-7_68

12. Cross V (1994) Journal of Intelligent Information Systems 3:29–56. http://dx.doi.org/10.1007/BF01014019 13. Deb K, Goldberg D E (1989) An investigation of niche and species formation in genetic function optimization. In: Proc. Third International Conference on Genetic Algorithms (ICGA’89), Hillsdale, USA, pp. 42–50.

14. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley.MATH

15. Eshelman L J, Schaffer J D (1993) Real-coded genetic algorithms and intervalschemata. In: Whitley L D (ed) Foundations of Genetic Algorithms 2, Morgan Kaufmann, pp. 187–202.

16. Fogel D B (1991) System identification trough simulated evolution. A machine learning approach. Ginn Press, USA.

17. Fonseca C M, Fleming P J (July, 1993) Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Proc. Fifth International Conference on Genetic Algorithms (ICGA’93), San Mateo, CA, pp. 416–423.

18. Goldberg D E, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. In: Proc. Second International Conference on Genetic Algorithms (ICGA’87), Hillsdale, USA, pp. 41–49.

19. Gordon M, Pathak P (1999) Information Processing and Management 35(2):141–180. http://dx.doi.org/10.1016/S0306-4573(98)00041-7

20. Herrera-Viedma E (2001) Journal of the American Society for Information Science 52(6):460–475. http://dx.doi.org/10.1002/1532-2890(2001)9999%3A9999%3C%3A%3AAID-ASI1087%3E3.0.CO%3B2-Q

21. Howard L, D’Angelo D (1995) IEEE Expert: 11–15.

22. Ide E (1971) New experiments in relevance feedback. In: Salton G. (ed) The SMART Retrieval System. Prentice Hall, pp. 337–354.

23. Koza J (1992) Genetic programming. On the programming of computers by means of natural selection. The MIT Press.MATH

24. Kraft D H, Petry F E, Buckles B P, Sadasivan T (1997) Genetic algorithms for query optimization in information retrieval: relevance feedback. In: Sanchez E, Shibata T, Zadeh L A (eds) Genetic algorithms and fuzzy logic systems. World Scientific, pp. 155–173.

25. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer-Verlag.MATH

26. Mitchel T M (1997) Machine learning. McGraw-Hill.

27. Rodríguez-Vazquez K, Fonseca C M, Fleming P J (July, 1997) Multiobjective genetic programming: A nonlinear system identification application. In: Late Breaking Papers at the Genetic Programming 1997 Conference, Stanford, USA, pp. 207–212.

28. Salton G, McGill M J (1989) Introduction to modern information retrieval. McGraw-Hill.

29. Sanchez E (1989) Information Systems 14(6):455–464. http://dx.doi.org/10.1016/0306-4379(89)90013-6

30. Sanchez L, Couso I, Corrales J A (2001) Information Sciences 136(1–4):175–191. http://dx.doi.org/10.1016/S0020-0255(01)00146-3

31. Schaffer J D (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic algorithms and their applications. Proc. of the First International Conference on Genetic Algorithms, pp. 93–100.

32. Schwefel H-P (1995) Evolution and optimum seeking. Sixth-Generation Computer Technology Series. John Wiley and Sons.

33. Smith M P, Smith M (1997) Journal of Information Science 23(6):423–431. http://dx.doi.org/10.1177/016555159702300603

34. van Rijsbergen C J (1979) Information retrieval (2nd edition). Butterworth.

35. Zadeh L A (1965) Information and Control 8:338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X

36. Zitzler E, Deb K, Thiele L (2000) Evolutionary Computation 8(2):173–195. http://dx.doi.org/10.1162/106365600568202

Links

Full Text

http://sci2s.ugr.es/sites/default/files/ficherosPublicaciones/0327_cordon-libro-loia.pdf

internal file


Sonstige Links