Bubble Hierarchies

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche

Reference

Marcel Hlawatsch, Michael Burch and Daniel Weiskopf: Bubble Hierarchies. In: Computational Aesthetics 2014.

DOI

http://dx.doi.org/10.1145/2630099.2630107

Abstract

We introduce bubble hierarchies as an approach to generating algorithmic art from random hierarchies. The technique is based on repeatedly drawing color-coded circles to illustrate parent--child relationships. The algorithm is simple and produces densely packed structures similar to the concept of Apollonian gaskets. We demonstrate the influence of different parameters on the visual outcome, such as the number of created circles or the color encoding. Our algorithm also supports multiple seeding points and obstacles that can be used to influence the layout of the hierarchy.

Extended Abstract

Bibtex

@inproceedings{Hlawatsch:2014:BH:2630099.2630107,
author = {Hlawatsch, Marcel and Burch, Michael and Weiskopf, Daniel},
title = {Bubble Hierarchies},
booktitle = {Proceedings of the Workshop on Computational Aesthetics},
series = {CAe '14},
year = {2014},
isbn = {978-1-4503-3019-0},
location = {Vancouver, British Columbia, Canada},
pages = {77--80},
numpages = {4},
url = {http://doi.acm.org/10.1145/2630099.2630107 http://de.evo-art.org/index.php?title=Bubble_Hierarchies },
doi = {10.1145/2630099.2630107},
acmid = {2630107},
publisher = {ACM},
address = {New York, NY, USA},
keywords = {algorithmic art, fractal structures, hierarchical structures, hierarchies, randomness},
}

Used References

Michael F. Barnsley , Robert L. Devaney , Benoit B. Mandelbrot , Heinz-Otto Peitgen , Dietmar Saupe , Richard F. Voss , Yuval Fisher , Michael McGuire, The Science of Fractal Images, Springer Publishing Company, Incorporated, 2011 http://dl.acm.org/citation.cfm?id=2408597&CFID=588525319&CFTOKEN=29804931

Beck, F., Burch, M., Munz, T., Di Silvestro, L., and Weiskopf, D. 2014. Generalized Pythagoras trees for visualizing hierarchies. In Proceedings of the International Conference on Information Visualization Theory and Application, 17--28.

Robert Bosch , Adrianne Herman, Continuous line drawings via the traveling salesman problem, Operations Research Letters, v.32 n.4, p.302-303, July, 2004 http://dx.doi.org/10.1016/j.orl.2003.10.001

Bourke, P. 2006. Constrained diffusion-limited aggregation in 3 dimensions. Computers & Graphics 30, 4, 646--649.

Paul Bourke, Chaos and Graphics: An introduction to the Apollonian fractal, Computers and Graphics, v.30 n.1, p.134-136, February, 2006 http://dx.doi.org/10.1016/j.cag.2005.10.017

Michael Burch , Michael Raschke , Daniel Weiskopf, Indented pixel tree plots, Proceedings of the 6th international conference on Advances in visual computing, November 29-December 01, 2010, Las Vegas, NV, USA http://dl.acm.org/citation.cfm?id=1939960&CFID=588525319&CFTOKEN=29804931

Burch, M., Andrienko, G., Andrienko, N., Höferlin, M., Raschke, M., and Weiskopf, D. 2013. Visual task solution strategies in tree diagrams. In Proceedings of Pacific Visualization, 169--176.

Federhen, S. 2012. The NCBI Taxonomy database. Nucleic Acids Research 40, Database-Issue, 136--143.

Fischer, F., Fuchs, J., and Mansmann, F. 2012. ClockMap: Enhancing circular treemaps with temporal glyphs for time-series data. In Proceedings of the Eurographics Conference on Visualization (EuroVis 2012 Short Papers), 97--101.

Kaplan, C. S., and Bosch, R. 2005. TSP art. In Renaissance Banff: Bridges 2005: Mathematical Connections in Art, Music and Science, 301--308.

Kruskal, J., and Landwehr, J. 1983. Icicle plots: Better displays for hierarchical clustering. The American Statistician 37, 2, 162--168.

LaValle, S. M., and Kuffner, Jr., J. J. 2001. Rapidly-exploring random trees: Progress and prospects. In Algorithmic and Computational Robotics: New Directions, B. R. Donald, K. M. Lynch, and D. Rus, Eds. A K Peters, 293--308.

Jeremy Long , David Mould, Dendritic stylization, The Visual Computer: International Journal of Computer Graphics, v.25 n.3, p.241-253, February 2009 http://dx.doi.org/10.1007/s00371-008-0217-0

Mandelbrot, B. 1982. The Fractal Geometry of Nature. W. H. Freeman and Company. New York.

Michael J McGuffin , Jean-Marc Robert, Quantifying the space-efficiency of 2D graphical representations of trees, Information Visualization, v.9 n.2, p.115-140, June 2010 http://doi.acm.org/10.1145/1890886.1890889

E. M. Reingold , J. S. Tilford, Tidier Drawings of Trees, IEEE Transactions on Software Engineering, v.7 n.2, p.223-228, March 1981 http://dx.doi.org/10.1109/TSE.1981.234519

Rosindell, J., and Harmon, L. 2012. OneZoom: A fractal explorer for the tree of life. PLOS Biology 10, 10, e1001406.

Ben Shneiderman, Tree visualization with tree-maps: 2-d space-filling approach, ACM Transactions on Graphics (TOG), v.11 n.1, p.92-99, Jan. 1992 http://doi.acm.org/10.1145/102377.115768

Wetzel, K., 2004. Pebbles--using circular treemaps to visualize disk usage. http://lip.sourceforge.net/ctreemap.html (accessed: 06-06-2014).


Links

Full Text

http://www.profitippliga.de/papers/65.pdf

intern file

Sonstige Links

http://www.visus.uni-stuttgart.de/en/institute/people/research-associates/marcel-hlawatsch.html