Co-Regularized Least-Squares for Label Ranking
Inhaltsverzeichnis
Reference
Evgeni Tsivtsivadze, Tapio Pahikkala, Jorma Boberg, Tapio Salakoski, Tom Heskes: Co-Regularized Least-Squares for Label Ranking. In: Fürnkranz, J. and Hüllermeier, E.: Preference Learning, 2011, 107-123.
DOI
http://dx.doi.org/10.1007/978-3-642-14125-6_6
Abstract
Situations when only a limited amount of labeled data and a large amount of unlabeled data are available to the learning algorithm are typical for many real-world problems. To make use of unlabeled data in preference learning problems, we propose a semisupervised algorithm that is based on the multiview approach. Our algorithm, which we call Sparse Co-RankRLS, minimizes a least-squares approximation of the ranking error and is formulated within the co-regularization framework. It operates by constructing a ranker for each view and by choosing such ranking prediction functions that minimize the disagreement among all of the rankers on the unlabeled data. Our experiments, conducted on real-world dataset, show that the inclusion of unlabeled data can improve the prediction performance significantly. Moreover, our semisupervised preference learning algorithm has a linear complexity in the number of unlabeled data items, making it applicable to large datasets.
Extended Abstract
Bibtex
@incollection{ year={2011}, isbn={978-3-642-14124-9}, booktitle={Preference Learning}, editor={Fürnkranz, Johannes and Hüllermeier, Eyke}, doi={10.1007/978-3-642-14125-6_6}, title={Co-Regularized Least-Squares for Label Ranking}, url={http://dx.doi.org/10.1007/978-3-642-14125-6_6, http://de.evo-art.org/index.php?title=Co-Regularized_Least-Squares_for_Label_Ranking }, publisher={Springer Berlin Heidelberg}, author={Tsivtsivadze, Evgeni and Pahikkala, Tapio and Boberg, Jorma and Salakoski, Tapio and Heskes, Tom}, pages={107-123}, language={English} }
Used References
1. A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in Proceedings of the 11th Annual Conference on Computational Learning Theory (ACM, New York, NY, USA, 1998), pp. 92–100
2. U. Brefeld, T. Gärtner, T. Scheffer, S. Wrobel, Efficient co-regularised least squares regression, in Proceedings of the 23rd International Conference on Machine learning (ACM, New York, NY, USA, 2006), pp. 137–144
3. U. Brefeld, T. Scheffer, Co-em support vector learning, in Proceedings of the 21st International Conference on Machine learning (ACM, New York, NY, USA, 2004), p.16
4. R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory (Cambridge University Press, 1991)
5. M. Collins, N. Duffy, New ranking algorithms for parsing and tagging: kernels over discrete structures, and the voted perceptron, in ACL ’02: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (Association for Computational Linguistics, Morristown, NJ, USA, 2001), pp. 263–270
6. O. Dekel, C.D. Manning, Y. Singer, Log-linear models for label ranking, in Advances in Neural Information Processing Systems, vol.16, ed. by S. Thrun, L. Saul, B. Schölkopf (MIT, Cambridge, MA, 2004), pp.497–504
7. J. Demšar, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
8. J. Fürnkranz, E. Hüllermeier, Preference learning. Künstliche Intelligenz 19(1), 60–61 (2005)
9. G.H. Golub, C.F.Van Loan, Matrix Computations (Johns Hopkins University Press, 1996)
10. R. Herbrich, T. Graepel, K. Obermayer, Support vector learning for ordinal regression, in Proceedings of the Ninth International Conference on Articial Neural Networks (Institute of Electrical Engineers, London, 1999), pp. 97–102
11. R. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985) http://dx.doi.org/10.1017/CBO9780511810817
12. T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Järvinen, J. Boberg, An efficient algorithm for learning to rank from preference graphs. Mach. Learn. 75(1), 129–165 (2009) http://dx.doi.org/10.1007/s10994-008-5097-z
13. T. Pahikkala, E. Tsivtsivadze, J. Boberg, T. Salakoski, Graph kernels versus graph representations: a case study in parse ranking, in Proceedings of the ECML/PKDD’06 workshop on Mining and Learning with Graphs, ed. by T. Gärtner, G.C. Garriga, T. Meinl, Berlin, Germany (pp.181–188) (2006)
14. T. Poggio, F. Girosi, Networks for approximation and learning. Proc. IEEE 78(9), 1481–1497 (1990) http://dx.doi.org/10.1109/5.58326
15. A. Pothen, H.D. Simon, K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990) http://dx.doi.org/10.1137/0611030
16. S. Pyysalo, F. Ginter, J. Heimonen, J. Björne, J. Boberg, J. Järvinen, T. Salakoski, BioInfer: A corpus for information extraction in the biomedical domain. BMC Bioinformatics, 8, 50 (2007) http://dx.doi.org/10.1186/1471-2105-8-50
17. J.Quinonero-Candela, CE. Rasmussen, A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)
18. D. Rosenberg, P.L. Bartlett, The rademacher complexity of co-regularized kernel classes, in Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, ed. by M. Meila, X. Shen (2007), pp. 396–403
19. B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, in Proceedings of the 14th Annual Conference on Computational Learning Theory, ed. by DavidP. Helmbold, B.Williamson (Springer, London, 2001), pp. 416–426
20. V. Sindhwani, P. Niyogi, M. Belkin, A co-regularization approach to semi-supervised learning with multiple views, in Proceedings of ICML Workshop on Learning with Multiple Views (2005)
21. V. Sindhwani, D. Rosenberg, An rkhs for multi-view learning and manifold co-regularization, in Proceedings of the 25th Annual International Conference on Machine Learning (ICML 2008), ed. by A. McCallum, S. Roweis (Omnipress, Helsinki, Finland, 2008), pp. 976–983 http://dx.doi.org/10.1145/1390156.1390279
22. A.J. Smola, B. Schölkopf, Sparse greedy matrix approximation for machine learning, in Proceedings of the 17th International Conference on Machine Learning, ed. by Pat Langley (Morgan Kaufmann Publishers, San Francisco, Ca, USA, 2000), pp. 911–918
23. E. Tsivtsivadze, T. Pahikkala, A. Airola, J. Boberg, T. Salakoski, A sparse regularized least-squares preference learning algorithm, in 10th Scandinavian Conference on Artificial Intelligence (SCAI 2008), vol. 173, ed. by A. Holst, P. Kreuger, P. Funk (IOS, 2008), pp. 76–83
24. E. Tsivtsivadze, T. Pahikkala, S. Pyysalo, J. Boberg, A. Mylläri, T. Salakoski, Regularized least-squares for parse ranking, in Advances in Intelligent Data Analysis VI, ed. by A.Fazel Famili, J.N. Kok, J.M. Peña, A. Siebes, A.J. Feelders (Springer, 2005), pp. 464–474
25. P.Vincent, Y.Bengio, Kernel matching pursuit. Mach. Learn. 48(1–3), 165–187 (2002)
Links
Full Text
Sonstige Links
http://www.learning-machines.com/ Evgeni Levin-Tsivtsivadze