Co-evolutionary Methods in Evolutionary Art
Inhaltsverzeichnis
Referenz
Greenfield, Gary: Co-evolutionary Methods in Evolutionary Art. In: Romero, Juan; Machado, Penousal: The Art of Artificial Evolution. Springer, Berlin, 2007, S. 357-380.
DOI
http://link.springer.com/10.1007/978-3-540-72877-1_17
Abstract
Following the ground breaking work of Sims and Latham there was a flurry of activity in interactive artificial evolution of images. However, the move towards non-interactive evolution of images that arises by invoking fitness functions to serve in place of users in order to guide simulated evolution proceeded haltingly and unevenly. If evolutionary computational models for image evolution are indeed inspired by nature, then it is natural to consider image evolution in the broader co-evolutionary context. This chapter briefly surveys the role co-evolutionary methods have played in evolutionary computation and then examines some of the instances where it has been applied to evolutionary art. The paucity of examples leads to a discussion of the challenges faced, and the difficulties encountered, when trying to use co-evolutionary methods both in evolutionary art and artificial creativity.
Extended Abstract
Bibtex
@incollection{ year={2008}, isbn={978-3-540-72876-4}, booktitle={The Art of Artificial Evolution}, series={Natural Computing Series}, editor={Romero, Juan and Machado, Penousal}, doi={10.1007/978-3-540-72877-1_17}, title={Co-evolutionary Methods in Evolutionary Art}, url={http://dx.doi.org/10.1007/978-3-540-72877-1_17 http://de.evo-art.org/index.php?title=Co-evolutionary_Methods_in_Evolutionary_Art }, publisher={Springer Berlin Heidelberg}, author={Greenfield, GaryR.}, pages={357-380}, language={English} }
Used References
Dawkins, R. (1989). The evolution of evolvability. In Langton, C., ed.: Artificial Life. Reading, Massachusetts. Addison-Wesley, 201–220
Sims, K. (1991). Artificial evolution for computer graphics. Computer Graphics, 25: 319–328
Koza, J. (1990). Evolution and co-evolution of computer programs to control independently acting agents. In Meyer, J., Wilson, S., eds.: From Animals to Animats, Proceedings of the First International Conference on Simulation of Adaptive Behavior. Cambridge, Massachusetts. MIT Press, 366–375
Sims, K. (1991). Interactive evolution of dynamical systems. In Varela, F., Bourgine, P., eds.: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life. Cambridge, Massachusetts. MIT Press, 171–178
Sims, K. (1993). Interactive evolution of equations for procedural models. The Visual Computer, 9: 466–476
Todd, S., Latham, W. (1991). Artificial life or surreal art. In Varela, F., Bourgine, P., eds.: Torward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life. Cambridge, Massachusetts. MIT Press, 504–513
Todd, S., Latham, W. (1992). Evolutionary Art and Computers. Academic Press. San Diego, California
Rowbottom, A. (1999). Evolutionary art and form. In Bentley, P., ed.: Evolutionary Design by Computers. San Francisco, California. Morgan Kaufmann, 261–277
Greenfield, G. (2002). On the co-evolution of evolving expressions. International Journal of Computational Intelligence and Applications, 2(1): 17–31
Baluja, S., Pomerleau, D., Jochem, T. (1994). Towards automated artificial evolution for computer-generated images. Connection Science, 6: 325–354
Greenfield, G. (2002). Color dependent computational aesthetics for evolving expressions. In Sarhangi, R., ed.: Bridges: Mathematical Connections in Art, Music, and Science; Conference Proceedings 2002. Winfield, Kansas. Central Plain Book Manufacturing, 9–16
Machado, P., Cardoso, A. (2002). All the truth about NEvAr. Applied Intelligence, 16(2): 101–119
Machado, P., Cardoso, A. (1998). Computing aesthetics. In Oliveira, F., ed.: Proceedings XIV-th Brazilian Symposium on Artificial Intelligence SBIA 98. Vol. 1515 of Lecture Notes in Artificial Intelligence. Berlin. Springer, 219–229
Ray, T. (1992). An approach to the synthesis of life. In Langton, C., et al., eds.: Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, Proceedings Volume X. Redwood City, California. Addison-Wesley, 371–408
Hillis, D. (1992). Co-evolving parasites improves simulated evolution as an optimization procedure. In Langton, C., et al., eds.: Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, Proceedings Volume X. Redwood City, California. Addison-Wesley, 313–324
Sims, K. (1994). Evolving 3d morphology and behavior by competition. In Brooks, R., Maes, P., eds.: Artificial Life IV, Proceedings of the Fourth Interantional Workshop on the Synthesis and Simulation of Living Systems. Cambridge, Massachusetts. MIT Press, 28–39
Reynolds, C. (1994). Competition, coevolution and the game of tag. In Brooks, R., Maes, P., eds.: Artificial Life IV, Proceedings of the Fourth Interantional Workshop on the Synthesis and Simulation of Living Systems. Cambridge, Massachusetts. MIT Press, 59–69
Nolfi, S., Floreano, D. (1998). Co-evolving predator and prey robots. Artificial Life, 4(4): 311–335
Angeline, P., Pollack, J. (1993). Competitive environments evolve better solutions to complex tasks. In Forrest, S., ed.: Proceedings of the Fifth Interantional Conference on Genetic Algorithms. San Mateo, California. Morgan Kaufmann, 264–270
Smith, R., Gray, B. (1994). Co-adaptive genetic algorithms: An example in othello strategy. In Dankel, D., ed.: Proceedings of the 1994 Florida Artificial Intelligence Research Symposium. Florida AI Research Society, 259–264
Pollack, J., Blair, A. (1998). Co-evolution in the successful learning of backgammon strategy. Machine Learning, 32(3): 225–240
Darwen, P., Yao, X. (2000). Does extra genetic diversity maintain escalation in a co-evolutionary arms race. International Journal of Knowledge-Based Intelligent Engineering Systems, 4(3): 191–200
Dolin, B., Bennett, F., Rieffel, E. (2002). Co-evolving an effective fitness sample: Experiments in symbolic regression and distributed robot control. In: Proceedings of the 2002 ACM Symposium on Applied Computing (SAC). Madrid, Spain. ACM Press, 553–559
Husbands, P., Mill, F. (1991). Simulated co-evolution as the mechanism for emergent planning and scheduling. In Belew, R., Booler, L., eds.: Proceedings of the Fourth International Conference on Genetic Algorithms. San Francisco, California. Morgan Kaufmann, 264–270
Todd, P. (2001). Simulating the evolution of musical behavior. In Wallin, N., ed.: The Origins of Music. MIT Press. Cambridge, Massachusetts
Werner, G., Todd, P. (1997). Too many love songs: Sexual selection and the evolution of communication. In Husbands, P., Harvey, I., eds.: Fourth European Conference on Artificial Life. Cambridge, Massachusetts. MIT Press/Bradford Books, 434–443
Rooke, S. (2002). Eons of genetically evolved algorithmic images. In Bentley, P., Corne, D., eds.: Creative Evolutionary Systems. San Francisco, California. Morgan Kaufmann, 339–365
Dorin, A. (2005). Artificial life, death and epidemics in evolutionary, generative, electronic art. In Rotlauf, F., et al., eds.: Applications of Evolutionary Computing, EvoWorkshops 2005 Proceedings. Vol. 3449 of Lecture Notes in Computer Science. Berlin. Springer, 448–457
Dorin, A. (2004). The virtual ecosystem as generative electronic art. In Raidl, G., et al., eds.: Applications of Evolutionary Computing, EvoWorkshops 2004 Proceedings. Vol. 3005 of Lecture Notes in Computer Science. Berlin. Springer, 467–476
Saunders, R., Gero, J. (2001). Artificial creativity: A synthetic approach to the subject of creative behavior. In Gero, J., ed.: Proceedings of the Fifth Conference on Computational and Cognitive Models of Creative Design. Sydney. Key Centre of Design Computing and Cognition, 113–139
Greenfield, G. (2000). Evolving expressions and art by choice. Leonardo, 33(2): 93–99
Greenfield, G. (1998). New directions for evolving expressions. In Srahangi, R., ed.: 1998 Bridges Conference Proceedings. Arkansas City, Kansas. Gilliland Publishing, 29–36
Greenfield, G. (1999). On understanding the search problem for image spaces. In Sarhangi, R., ed.: 1999 Bridges Conference Proceedings. White Plains, Maryland. Gilliland Publishing, 41–54
Greenfield, G. (2000). Art and artificial life — a coevolutionary approach. In Bedau, M., et al., eds.: Artificial Live VII Conference Proceedings. Cambridge, Massachusetts. MIT Press, 529–536
Greeenfield, G. (2002). Simulated aesthetics and evolving artworks: A coevolutionary approach. Leonardo, 35(3): 283–289
Greenfield, G. (2003). Evolving aesthetic images using multiobjective optimization. In McKay, B., et al., eds.: Congress on Evolutionary Computation, CEC 2003. Vol. 3. Canberra, Australia. IEEE Press, 1903–1909
Belpaeme, T. (1999). Evolving visual feature detectors. In Floreano, D., et al., eds.: Advances in Artificial Life, Proceedings of the Fifth European Conference. Vol. 1674 of Lecture Notes in Artificial Intelligence. Berlin. Springer, 266–270
Greenfield, G. (2000). Mathematical building blocks for evolving expressions. In Sarhangi, R., ed.: 2000 Bridges Conference Proceedings. Winfield, Kansas. Central Plain Book Manufacturing, 61–70
Maeda, J. (1999). Design by Numbers. MIT Press. Cambridge, Massachussetts
Clement, D. (2000). Coevolution of evolved expressions Honor’s Thesis, University of Richmond, Virginia.
Cartlidge, J., Bullock, S. (2004). Combating coevolutionary disengagement by reducing parasite virulence. Evolutionary Computation, 12(2): 193–222
Mitchell, M., Crutchfield, J., Das, R. (2006). The role of space in the success of coevolutionary learning. In Rocha, L.M., et al., eds.: Artificial Life X: Proceedings of the Tenth Conference on the Simulation and Synthesis of Living Systems. Cambridge, Massachusetts. MIT Press, 118–124
Williams, N., Mitchell, M. (2005). Investigating the success of spatial coevolutionary learning. In Beyer, H.G., et al., eds.: Proceedings of the 2005 Genetic and Evolutionary Computation Conference, GECCO-2005. New York, New York. ACM Press, 523–530
Greenfield, G. (2004). Tilings of sequences of co-evolved images. In Raidl, G., et al., eds.: Applications of Evolutionary Computing, EvoWorkshops 2004. Vol. 3005 of Lecture Notes in Computer Science. Berlin. Springer, 260–269
Cliff, D., Miller, G. (1995). Tracking the red queen: Measurements of adaptive progress in co-evolutionary simulations. In Moran, F., et al., eds.: Advances in Artificial Life: Third European Conference on Artificial Life. Vol. 929 of Lecture Notes in Artificial Intelligence. Granada Spain. Springer, 200–218
Cartlidge, J., Bullock, S. (2003). Caring versus sharing: How to maintain engagement and diversity in coevolving populations. In Banzhaf, W., et al., eds.: Proceedings of the 7th European Conference on Artificial Life (ECAL 2003). Vol. 2801 of Lecture Notes in Artificial Intelligence. Heidelberg. Springer, 299–308
Ficici, S., Pollack, J. (1998). Challenges in co-evolutionary learning; arms-race dynamics, open-endedness, and mediocre stable states. In Adami, C., et al., eds.: Artificial Life VI. Cambridge, Massachusetts. MIT Press, 238–247
Staudek, T. (2003). Computer-aided aesthetic evaluation of visual patterns. In Barrallo, J., et al., eds.: ISAMA-BRIDGES 2003 Conference Proceedings. Granada, Spain. University of Granada, 143–149
Arnheim, R. (1974). Entropy and Art, an Essay on Order and Disorder. University of California Press. Berkeley, California
Arnheim, R. (1966). Towards a Psychology of Art, Collected Essays. University of California Press. Berkeley, California
Ramachandran, V., Hirstein, W. (1999). The science of art: A neurological theory of aesthetic experience. Journal of Consciousness Studies, 6(1-2): 15–52
Zeki, S. (1999). Inner Vision, an Exploration of Art and the Brain. Oxford University Press. New York, New York
Paredis, J. (1997). Coevolving cellular automata: Be aware of the red queen. In Back, T., ed.: Proceedings of the Seventh International Conference on Genetic Algorithms. San Francisco, California. Morgan Kaufmann, 393–400
Wiens, A., Ross, B. (2002). Gentropy: Evolving 2D textures. Computers and Graphics, 26(1): 75–88
Links
Full Text
[extern file]